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Abstract: Epitopes from different proteins expressed by Mycobacterium tuberculosis (Rv1886c, Rv0341,
Rv3873) were selected based on previously reported antigenic properties. Relatively short linear
T-cell epitope peptides generally have unordered structure, limited immunogenicity, and low in vivo
stability. Therefore, they rely on proper formulation and on the addition of adjuvants. Here we
report a convenient synthetic route to induce a more potent immune response by the formation of a
trivalent conjugate in spatial arrangement. Chemical and structural characterization of the vaccine
conjugates was followed by the study of cellular uptake and localization. Immune response was
assayed by the measurement of splenocyte proliferation and cytokine production, while vaccine
efficacy was studied in a murine model of tuberculosis. The conjugate showed higher tendency to
fold and increased internalization rate into professional antigen presenting cells compared to free
epitopes. Cellular uptake was further improved by the incorporation of a palmitoyl group to the
conjugate and the resulted pal-A(P)I derivative possessed an internalization rate 10 times higher
than the free epitope peptides. Vaccination of CB6F1 mice with free peptides resulted in low T-cell
response. In contrast, significantly higher T-cell proliferation with prominent expression of IFN-γ,
IL-2, and IL-10 cytokines was measured for the palmitoylated conjugate. Furthermore, the pal-A(P)I
conjugate showed relevant vaccine efficacy against Mycobacterium tuberculosis infection.

Keywords: T-cell epitope; maleimide conjugation; Mycobacterium tuberculosis; peptide-based
vaccines; tuftsin

1. Introduction

Vaccination with whole pathogens elicits long-lasting immunity and robust immune response.
However, immunization with subunit vaccines using purified and specific antigens became an attractive
alternative because of manufacturing, safety, and stability considerations. Efficient vaccination is
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still challenging in a variety of infectious diseases where the causative agent shows high antigenic
diversity due to fast mutation rate or metamorphosis. Subunit vaccines that can combine multiple
antigens derived from different stages of a pathogen’s life cycle hold promise for overcoming the
major obstacles.

The premise of the epitope-based vaccine approach is the more focused and more functional
protective immunity [1]. Epitopes are minimal antigenic determinants of proteins. They have
the capacity to activate B- and T-cells and consequently elicit humoral and/or cellular immune
response against the target pathogen. Synthetic peptides have great potential for pharmaceutical
application, as they are compounds with high selectivity and specificity, good tolerability, well-defined
chemical composition, stability, solubility, and affordable large-scale production [2]. However, we
need to deal with disadvantages such as the fast in-vivo degradation, low systemic stability, lack
of tissue-specific penetration, loss of native conformation, and low immunogenicity. Despite these
generic disadvantages, there are approximately 140 peptide therapeutics being evaluated in clinical
trials [3]. Chemical modifications such as cyclisation, non-native amino acid incorporation, conjugation
to carriers, and lipid elongation can improve protease resistance, enhance the tendency to fold, and
increase the overall bioavailability [4,5]. Moreover, peptide synthetic and conjugation techniques give
us a tool to combine different epitope peptides in one compound that can reflect the antigen diversity
of a pathogen [6].

In this study, epitope peptides derived from immunodominant proteins of Mycobacterium
tuberculosis (Mtb) were evaluated. After infection, active Mtb bacterium can remain in the host
phagocytes and renders itself to a phenotypically resistant form [7]. In this latent phase, the pathogen
changes its gene expression and consequently the whole antigen repertoire. To enhance the efficacy
of a vaccine against tuberculosis (TB), it is essential to combine T-cell epitopes derived from proteins
that are expressed by active and latent forms of the causative pathogen [8]. In order to produce a
multivalent vaccine conjugate, the following proteins were considered in this study:

• Ag85B (325 aa, encoded by the Rv1886c gene) is an early secreted antigen that is associated
with active bacterial replication [9,10]. In the C-terminal region, CD8+ T-cell epitope
peptide 239-KLVANNTRL-247 (A) was reported to lyse BCG-infected human macrophages
and Ag85B-pulsed CD8 + T-cells [11–13].

• Isoniazid-inducible protein, IniB (479 aa, encoded by the Rv0341 gene), is strongly upregulated in
response to a broad range of inhibitors of cell wall biosynthesis, including isoniazid, a first-line
antitubercular drug [14,15]. In the 33–45 region, an MHC I-associated 33-GLIDIAPHQISSV-45
peptide (I) was identified that can induce the generation of peptide-specific cytotoxic T-cells and
lysis of Mtb-infected dendritic cells [16].

• PPE68 protein (368 aa, encoded by the Rv3873 gene) is one of the major antigenic protein
associated with dormancy and assists the pathogen in surviving within the host phagocytes [17,18].
Highly sensitive PPE68-specific T-cell epitope peptides within the 124–156 region were described
recently [17,19,20], of which the 127-FFGINTIPIA-136 peptide (P) was identified as an HLA-DR
promiscuous core sequence [21].

Empty MHC molecules on the surface of professional antigen-presenting cells are able to collect
peptide antigens from the extracellular milieu for presentation to T cells. Nevertheless, larger peptides
and conjugates that have entered the endocytic pathway of antigen presentation provoke a more
efficient immune response. This observation leads to the utilization of synthetic long peptides (SLPs)
that have proven clinical efficacy for tumor therapy [22] and against numerous autoimmune [23]
and infectious diseases [24]. However, the step-by-step synthesis of long peptides is challenging.
Incomplete coupling reactions and/or deprotection and aggregation of the growing peptide chain often
result in deletion sequences and overall inefficiencies in the production of SLPs. Therefore, fragment
condensation and chemical ligation techniques are often applied. Besides, branched-chain conjugates
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are designed to ameliorate synthetic difficulties. Nevertheless, the spatial arrangement is an effective
way of disrupting peptide aggregation.

Another challenge is to design a conjugate with epitopes that induces efficient cell-mediated
immune response and delivers the epitopes to antigen-presenting cells. The elongation of peptide-based
conjugates with lipid moieties has been shown to give them function as both adjuvants and delivery
vehicles [1,2,25]. Previous studies have illustrated a role for the improved immunogenicity of
self-adjuvanting lipopeptide delivery systems that contain C16 lipid (palmitic acid) with the advantage
of increased cellular uptake by dendritic cells and activation of Th1/Th2 cytokine response [26].

In this work, the role of the palmitoyl elongation of a branched-chain epitope conjugate was
studied. As a core sequence, tuftsin peptide was applied. Tuftsin, a natural immunostimulatory
tetrapeptide (TKPR), has been found to increase macrophage-mediated phagocytosis, splenocyte
proliferation, and bactericidal activity [27–29]. During the past decade, a new group of peptide carriers
was developed in our laboratory: peptide derivatives consisting of the canine sequence (TKPKG) that
exhibits tuftsin-like properties [30].

2. Materials and Methods

2.1. Materials

For peptide synthesis, amino acid derivatives were obtained from Iris Biotech (Marktredwitz,
Germany). Reagents such as N,N’-diisopropylcarbodiimide (DIC), triisopropylsilane (TIS),
1-hydroxybenzotriazole (HOBt), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), NH4OAc, palmitic
acid, 6-maleimidohexanoic acid, acetic anhydride (Ac2O), N,N-diisopropylethylamine (DIEA),
2,2,2-trifluoroethanol (TFE), and 5(6)-carboxyfluorescein (Cf ) were purchased from Sigma-Aldrich
(Budapest, Hungary). Fmoc-Rink Amide MBHA resin was obtained from Merck. Trifluoroacetic acid
(TFA), N,N-dimethylformamide (DMF), dichloromethane (DCM), 2-ethoxyethanol (Cellosolv), diethyl
ether, and acetonitrile (AcN) were from VWR (Budapest, Hungary).

For the in vitro assays, RPMI-1640 medium, fetal calf serum (FCS), 5(6)-carboxyfluorescein diacetate
N-succinimidyl ester (CFSE), concanavalin A (ConA), Mowiol® 4–88, trypan blue, and trypsin were
obtained from Sigma-Aldrich (Budapest, Hungary). Macrophage colony-stimulating factor (M-CSF) was
from Shenandoah Biotechnology (Warwick, PA, USA). BBL Löwenstein–Jensen Medium was ordered
from Becton Dickinson (Környe, Hungary), HPMI buffer (9 mM glucose, 10 mM NaHCO3, 119 mM
NaCl, 9 mM HEPES, 5 mM KCl, 0.85 mM MgCl2, 0.053 mM CaCl2, 5 mM Na2HPO4 × 2H2O, pH = 7.4)
was prepared in-house using components obtained from Sigma-Aldrich (Budapest, Hungary).

2.2. Synthetic Procedures

Peptides were produced on solid phase (Fmoc-Rink Amide MBHA resin, capacity = 0.67 mmol/g)
in an automated peptide synthesizer (Syro-I, Biotage, Uppsala, Sweden) using a standard Fmoc/tBu
strategy with DIC/HOBt coupling reagents. Fluorescently labelled derivatives were synthesized with
the use of 5(6)-carboxyfluorescein with the DIC/HOBt coupling method. In the case of branched
conjugates, one of the lysines in the sequence of the AI peptide was used in Fmoc-Lys(Dde)-OH
protected form. The N-terminus of the AI peptide was acetylated with Ac2O:DMF:DIEA = 1:3:1.2
mixture (30 min, RT). In the case of the palmitoylated derivative (pal-AI), palmitic acid was introduced
on the N-terminus of the AI peptide. After synthesis of the linear peptide chain (AI or pal-AI),
the Dde protecting group was selectively removed with 2% N2H2/DMF solution (6 × 2 min) then
6-maleimidohexanoic acid was reacted with the free amino group in the presence of DIC/HOBt coupling
reagents. Peptides were cleaved from the resin with TFA:H2O:TIS (9.5:2.5:2.5 v/v) mixture (2 h, RT).
After filtration, compounds were precipitated in cold diethyl ether, centrifuged (4000 rpm, 5 min) and
freeze-dried from water.

Maleimide derivative of AI or pal-AI peptide (50 mg) was dissolved in 10 mL 1:2 mixture of
2-ethoxyethanol (Cellosolv) and 0.1 M NH4OAc (pH = 5.2). Then, 1.1 equiv. of cysteine elongated
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epitope P was added to the solution and stirred for 12 hours. The solution was freeze-dried and
purified by RP-HPLC.

RP-HPLC purification was performed on a ThermoFisher (Waltham, MA, USA) UltiMate 3000
Semiprep HPLC with a C-18 Phenomenex Jupiter column (250 × 10 mm) using gradient elution,
consisting of 0.1% TFA in water (eluent A) and 0.1% TFA in acetonitrile:water = 80:20 (v/v) (eluent B).
For palmitoylated derivatives, a C-4 Phenomenex Jupiter (250 × 10 mm) column was used.

Purified peptides were analyzed by RP-HPLC on analytical C-18 or C-4 columns using gradient
elution with the above-mentioned eluents A and B (flow rate was 1 mL/min, UV detection at λ= 220 nm).
The molecular mass of the peptides was determined using a Thermo Scientific (Waltham, MA, USA) Q
Exactive™ Focus Hybrid Quadrupole-Orbitrap™Mass Spectrometer. The peptide content of the final
product was determined by amino acid analysis using a Sykam Amino Acid S433H analyzer equipped
with an ion-exchange separation column. Prior to analysis, samples were hydrolyzed with 6 M HCl in
sealed and evacuated tubes at 110 ◦C for 24 h. For post-column derivatization, the ninhydrin-method
was used.

2.3. Electronic Circular Dichroism (ECD) Spectroscopy

ECD measurements were performed on a Jasco J-1500 dichrograph in a 0.1-cm quartz cell at
room temperature. The solvent reference spectrum was used as baseline, which was automatically
subtracted from the peptide ECD spectra. Band intensities were expressed in mean residue ellipticity
([Θ]MR, deg × cm2/dmol).

2.4. In Vitro Evaluation (Cellular Uptake, Cytotoxicity, and Hemolytic Activity Assays)

Internalization of the compounds was measured in the MonoMac6 (MM6) human monocytic
cell line [31] and on murine bone marrow-derived macrophages (BMDMs). MonoMac6 cells were
maintained as an adherent culture in RPMI-1640 supplemented with 10% heat-inactivated fetal calf
serum (FCS) L-glutamine (2 mM) and gentamicin (35 µM) at 37 ◦C in a humidified atmosphere
containing 5% CO2. For the generation of BMDMs, cells were isolated from tibiae and femurs of
6–12 week-old BALB/c mice, then cells were cultured in R-10 media containing 10 ng/mL M-CSF for
7 days. For the assay, cells were treated with peptides at 2.5 µM final concentration and were incubated
for 2 hours. After centrifugation (1000 rpm, 5 min) and washing with serum-free RPMI medium,
supernatant was removed and 100 µL 0.25% trypsin was added to the cells. After 5 min incubation,
0.8 mL 10% FCS/HPMI medium was added, then cells were washed and re-suspended in 0.3 mL
HPMI medium. The intracellular fluorescence intensity of the cells was measured on a BD LSR II flow
cytometer (BD Biosciences, San Jose, CA, USA) on channel FITC (emission at λ = 505 nm) and data
were analyzed with FACSDiva 5.0 software (BD Biosciences, San Jose, CA, USA). External fluorescence
quenching was performed by adding 10 µL of 0.04% trypan blue solution. All measurements were
performed in triplicates, and the mean fluorescent intensity together with standard error of the mean
(SEM) was graphically presented.

Cellular uptake and localization were visualized by confocal microscopy. MM6 cells were seeded
(105 cells/well) one day prior to treatment on cover glass containing 24-well plates (Sarstedt, Nümbrecht,
Germany). Lysosomes were stained by LysoTrackerTM Deep Red (Invitrogen, Carlsbad, CA, USA)
for 30 min, followed by incubation with Cf -labeled peptides for 60 min. Subsequently, nuclei were
stained by Hoechst 33342 solution (Thermo Scientific, Waltham, MA, USA). After each step, cells were
washed three times with serum-free medium. Cells were fixed by 4% paraformaldehyde for 15 min
and mounted to microscopy slides with Mowiol® 4–88. Imaging was performed on a Zeiss LSM
710 system with 40× oil immersion objective. Images were processed with ZEN lite software (Zeiss,
Oberkochen, Germany).

The hemolytic activity of the compounds was measured on human erythrocyte suspension.
Cytotoxicity was assayed on murine BMDM. These two experiments are detailed in the
Supplementary Information.
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2.5. Ethical Statement

Animal experiments were carried out in accordance with the guidelines of Directive 2010/63/EU
and Hungarian laws, and were approved by the Hungarian Scientific Ethical Committee on Animal
Experimentation under the following protocol number: PE/EA/2569-4/2016.

2.6. Mice and Immunization

For the immunogenicity study, 6–10-week-old female CB6F1 mice (a cross between female BALB/c
and male C57BL/6) were caged and allowed ad libitum access to water and to a standard pellet diet.
Vaccine candidates (50 µg peptide/100 µL PBS) were injected s.c. three times, two weeks apart. Six
weeks after the last immunization, mice were euthanized, and spleens were removed under sterile
conditions. Single splenocyte suspension was prepared by macerating the cells through a 70 µM cell
strainer (Falcon, Corning, NY, USA). After the lysis of the red blood cells with ACK lysis buffer (2 mL),
cells were washed and resuspended in 5 mL RPMI-1640 media.

2.7. T-Cell Proliferation and Cytokine Assays

For the proliferation study, the protocol of Quah et al. was used [32]. Briefly, splenocytes
(1–2 × 107/mL PBS) were incubated with 5 µM 5(6)-carboxyfluorescein diacetate N-succinimidyl ester
(CFSE) for 3 min. Excess CFSE was removed by extensive washing with 20% FCS/RPMI. Then, CFSE
labelled cells were plated (2 × 105 cells/well) and cultured with the antigens (P/A/I mix, 2.5 µM)
for 5 days. As positive control, concanavalin A (ConA) was used at 5 µg/mL concentration. The
proliferation of CFSE-labelled cells was analyzed by flow cytometry, and the percentages of proliferated
cells were presented as a diagram.

To measure the cytokine release, splenocytes were plated (2× 105 cells/well) and re-stimulated with
the antigens (P/A/I mix, 2.5µM). After 5 days of incubation, supernatants were assayed by LEGENDplex
Mouse Th Cytokine Panel (BioLegend, San Diego, CA, USA) following the manufacturer’s instructions.

2.8. Vaccine Efficacy

All work with infectious Mtb was performed at the National Public Health Center, National
Biosafety Laboratory in Hungary under biosafety level 3 (BSL-3) conditions. For infection experiments,
mice were kept in ventilated cages in the BSL-3 facility. Mice were infected with a mid-logarithmic
culture of Mycobacterium tuberculosis H37Rv (106 CFU/mL in PBS, 200 µL, i.p.) three weeks after the final
immunization. Weight gain and well-being of the animals were monitored daily. Seven weeks after,
mice were euthanized, and their organs were removed. To determine the viable bacteria, a portion
of lung and spleen were homogenized in a tissue homogenizer using ceramic beads (MagNA Lyser
Green Beads, Roche, Basel, Switzerland) in Bouillon broth (2 times 60 s, 7000 Hz), then 100 µL of the
supernatant was plated onto BBL Löwenstein–Jensen Medium (Becton Dickinson, (Környe, Hungary).
Colony forming units (CFU) were counted after 4 weeks of incubation. For histopathological analysis,
the lung, spleen, liver, and kidney of each animals were removed and fixed in 8% neutral buffered
formalin for 24 h at room temperature before removing from the high-containment facility. Tissue
specimens were dehydrated in a series of ethanol and xylene baths and embedded in paraffin wax.
Sections (3–4 µm) were stained with hematoxylin and eosin (HE). For in situ visualization of the
acid-fast bacilli, the Ziehl–Neelsen (ZN) staining method was applied on similarly pre-treated sections.
Slides were analyzed in an Olympus BX53 microscope (Tokyo, Japan), and photomicrographs were
obtained with an Olympus SC100 high-resolution digital color camera with the use of the Olympus
cellSens imaging software platform (Münster, Germany).

3. Results

The chimeric peptide KLVANNTRL-TKPKG-GLIDIAPHQISSV (AI) was designed to incorporate
epitope peptide of Ag85B (A) and IniB (I) separated with a tuftsin sequence (TKPKG). The epitope of
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PPE68 (P) was attached to this peptide by the maleimide coupling strategy. The N-terminus of epitope
P was acetylated (A(P)I) or lipidated with palmitic acid (pal-A(P)I) (Scheme 1).Vaccines 2019, 7, x FOR PEER REVIEW 6 of 15 
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Scheme 1. Outline of the synthesis of the pal-A(P)I conjugate.

3.1. Chemistry

The maleimide coupling strategy is a one-pot direct approach to attach a maleimide-peptide
derivative to a cysteine elongated peptide. In the reaction mixture, the maleimide coupling
reaction competes with the dimerization of the cysteine peptide (Scheme 2a). The dimerization
of a cysteine-containing peptide strongly depends on the sequence and position of the cysteine residue.
To distinguish which peptide arrangement would result in the best yield, all three epitopes were
synthesized with cysteine, and the dimerization rate was measured. The slowest dimerization (disulfide
bond formation) was measured for epitope P where the Cys residue was at the C-terminus of the peptide
(FFGINTIPIA-C) (Scheme 2b). Therefore, this peptide was used further in the conjugation reaction.

Epitope P-Cys was allowed to react with the maleimide derivative of AI. The maleimide group
was introduced on the solid phase after selectively removing the side chain protecting group of one of
the lysines in the tuftsin core. The maleimide group remains intact during the final cleavage in the
absence of nucleophiles such as thiol-based scavengers (i.e., 1,2-ethandithiol). It is also important to
note that the Fmoc deprotection step should precede the coupling of maleimide because piperidine,
which is used in the cleavage cocktail, reacts with maleimides. In the case of the palmitoylated
derivative pal-AI, Cellosolv (2-ethoxyethanol) solvent was used in a mixture with 0.1 M NH4OAc
(pH = 5.2). Cellosolv is an effective solvent for a wide array of apolar compounds, and is miscible
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with water. To solubilize a hydrophobic reactant, organic solvents such as N,N-dimethylformamide
(DMF) or dimethyl sulfoxide (DMSO) are often used, but unlike DMF or DMSO, Cellosolv can be
easily removed by lyophilization or rotary evaporation. After synthesis and purification, peptides and
conjugates were characterized by high-resolution mass spectrometry, analytical HPLC chromatography,
and amino acid analysis (Table 1).Vaccines 2019, 7, x FOR PEER REVIEW 7 of 15 
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and (b) the rate of dimerization of cysteine elongated epitope peptides.

Table 1. Analytical characteristics of the peptides and peptide conjugates.

Compound Sequence Mmo Calc. Mmo Meas.1 Rt (min) 2 Peptide Content (%) 3

P/A/I mix
KLVANNTRL 1026.6298 1026.6295 8.4 53.6

GLIDIAPHQISSV 1347.7510 1347.7508 10.7 58.2
FFGINTIPIA 1090.6175 1090.6174 12.7 65.1

AI KLVANNTRL-TKPKG-
GLIDIAPHQISSV 2868.6661 2868.6679 10.2 58.5

A(P)I
KLVANNTRL-TKmal
(FFGINTIPIAC)PKG-

GLIDIAPHQISSV
4297.3535 4297.3649 13.0 64.5

pal-A(P)I
palmitoyl-KLVANNTRL-

TKmal(FFGINTIPIAC)PKG-
GLIDIAPHQISSV

4493.5726 4493.5757 24.1* 78.2

Cf -P/A/I mix
Cf-KLVANNTRL 1384.6775 1384.6778 11.3 nd

Cf -GLIDIAPHQISSV 1705.7988 1705.7986 13.3 nd
Cf -FFGINTIPIA 1448.6653 1448.6654 14.8 nd

A(Cf-P)I
KLVANNTRL-TKmal(Cf -

FFGINTIPIAC)PKG-
GLIDIAPHQISSV

4655.4012 4655.4147 15.5 65.2

pal-A(Cf -P)I
palmitoyl-KLVANNTRL-

TKmal(Cf-FFGINTIPIAC)PKG-
GLIDIAPHQISSV

4851.6203 4851.6357 25.9 * 81.5

1 Exact Mmo (monoisotopic molecular mass) measured on a Thermo Scientific Q Exactive™ Focus Hybrid
Quadrupole-Orbitrap™ Mass Spectrometer. 2 Retention time on an Agilent Eclipse XDB C8, 4.6 × 150 mm
column, gradient: 5% B, 2 min; 5%–100% B, 20 min. * Phenomenex Jupiter C4, 4.6 × 250 mm column, gradient:
25% B, 5 min; 5%–100% B, 25 min. 3 Determined by amino acid analysis of the lyophilized final products. (nd: not
determined). Cf is for 5(6)-carboxyfluorescein, the C-terminus of the peptides are in amidated form.

Freeze-dried peptide products contain impurities of counter-ions and residual water. Net peptide
content, measured by amino acid analysis, varied between 53.6% and 78.2% (Table 1). This is affected
mainly by the amino acid composition and shows a strong correlation with the hydrophobicity of
the peptides. Retention time on RP-HPLC chromatograms is a good indicator of the hydrophobicity
of a peptide. For the peptides and conjugates, the greater retention time, the higher the measured
peptide content.
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3.2. Conformation Studies

Conformation of the peptides and conjugates was studied by electronic circular dichroism (ECD).
The palmitoylated peptide conjugate pal-A(P)I is a hydrophobic molecule, characterized by very low
water solubility. Thus, ECD measurements were performed in trifluoroethanol (TFE). This solvent
promotes the formation of secondary structure. By the help of TFE, it is possible to investigate the
propensity of a peptide to fold in a hydrophobic or lipophilic environment. Results show that the short,
linear epitope peptides had highly dynamic conformation, even in TFE. In contrast, branched-chain
conjugates had a much higher tendency to fold. The palmitoylated pal-A(P)I conjugate gave a more
intense spectrum in the range of 185–210 nm, indicating a more partially folded state (Figure 1). These
results reveal that branched conjugates were able to form an ordered structure (e.g., turn or helical) in
a non-hydrophilic medium.
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Figure 1. Electronic circular dichroism (ECD) spectra of the peptide and conjugates in
trifluoroethanol (TFE).

3.3. Immunological Evaluation

To study the role of conjugation and the role of palmitoylation, the following Cf -labelled
compounds were compared: mixture of epitopes (named as P/A/I mix); branched conjugate A(P)I, and
the palmitoylated conjugate pal-A(P)I. Internalization of peptides and conjugates to antigen-presenting
cells was measured on two model cells, namely murine bone marrow-derived macrophages (BMDMs)
and MonoMac6 human monocytes (MM6). The gating strategy of the flow cytometry measurements is
shown in Figure S1. The cellular uptake of the A(P)I conjugate was higher than the uptake of the short
epitope peptides (P/A/I mix). Furthermore, palmitoylation dramatically improved the internalization
rate to human and to murine cells. The highest response was measured for pal-A(P)I (Figure 2a,b).

Localization of the compounds was visualized by confocal laser scanning microscopy in MM6 cells
(Figure 2c). Cells were incubated with Cf -labelled peptides for 60 min; moreover, nuclei and lysosomes
were also stained. The peptide concentrations for P/A/I mix, A(P)I, and pal-A(P)I were 5, 2.5, and
0.5 µM, respectively. As different compound concentrations and laser intensities were also used to
visualize the compounds showing low or high internalization, the presented images give information
about the intracellular localization and are not to be considered in a quantitative manner. The epitope
peptide mixture (P/A/I mix) principally showed colocalization with lysosomes that was even more
pronounced in case of A(P)I. Pal-A(P)I conjugate could be detected both in lysosomes and in the
cytosol, which might indicate that this compound internalizes not only through the endo-lysosomal
pathway, but also through direct cell penetration (Figure 2c).
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Figure 2. The internalization of Cf -labelled epitope peptides and conjugates (P/A/I mix, A(P)I,
pal-A(P)I) was studied on (a) murine bone marrow-derived macrophages (BMDMs) and (b) MonoMac6
human monocytes (MM6) by using flow cytometry. (c) Localization of the compounds in MM6 cells
were visualized by confocal laser scanning microscopy. Cells were incubated with Cf-labelled peptides
(green), lysosomes were stained with LysoTracker Deep Red (red), nuclei were stained with Hoechst
33342 (blue). The scale bar represents 10 µm. (***: p < 0.001).

To accurately quantify the internalization of the peptides and to distinguish surface-bound
peptides from internalized ones, external fluorescence was either quenched with trypan blue or
membrane-absorbed peptides were removed by trypsin. Trypsinization is used to dissociate adherent
cells from the plate in which they were cultured and, in the meantime, cell surface proteins and surface
bound compounds are also cleaved from the cells. Trypan blue dye is non-permeant to live cells and is
reported to quench the extracellular green fluorescence signal [33]. Cellular uptake of trypsinized cells
showed the same rate as non-trypsinized cells (Figure 3a), and the percentage of FITC positive live
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cells was the same before and after the addition of trypan blue (Figure 3b). These results indicate that
the peptides and conjugates were internalized rather than surface bound.
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Figure 3. Detailed study on the cellular uptake by antigen presenting cells and the time course of
internalization. Fluorescence intensity of compound treated cells was analyzed by flow cytometry
(a) with or without trypsinization, and (b) in the presence or absence of trypan blue. No significant
differences were observed after eliminating the fluorescent signal from adsorbed peptides or conjugates.
(c) To study the time course of internalization, different incubation periods (15 min, 1 h, 3 h, 6 h, and
16 h) were applied, and the intracellular fluorescence intensity was measured. (d) The viability of
compound-treated cells was compared to untreated control cells, and relative viabilities are presented.
The viability of the control cells was always > 85% (results are represented as mean ± SEM, n = 3).

To further analyze the internalization of the compounds, the time course of the cellular uptake
rate was measured by flow cytometry. As shown in Figure 3c, peptide-treated cells exhibited a
time-dependent increase in the percentage of FITC-positive cells and in the mean fluorescence intensity.
The internalization rate of pal-A(P)I conjugate was very fast. After 15 min incubation, the pal-A(P)I
conjugate was inside almost all of the cells. Observations with A(P)I revealed that the internalization
of this conjugate was significantly slower than the internalization of pal-A(P)I. Overnight treatment
with A(P)I produced the same manner of intracellular fluorescence as 15 min treatment with pal-A(P)I.
Results of flow cytometry and microscopy suggest that A(P)I and pal-A(P)I conjugates possess different
internalization mechanisms and endocytic pathways.

The cytotoxicity of the compounds was measured on BMDM cells. Cells were incubated with the
compounds for 3 h, then the viability was assayed by MTT test. Compounds A, P, I, AI, and A(P)I were
not cytotoxic up to 100 µM concentration. The IC50 value of the palmitoylated conjugate pal-A(P)I
was 76.0 ± 2.5 µM (Table S1). The hemolytic activity of the compounds was also evaluated using a
human erythrocyte suspension. None of the tested compounds caused the hemolysis of red blood cells
(HC50 > 100 µM) (Table S1). Based upon these results, peptides and conjugates were considered as safe
and good candidates for in vivo functional assays.
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To determine whether lipo-tuftsin conjugation could successfully improve the immunogenicity
of T-cell epitope peptides, T-cell proliferation and cytokine release was measured using immunized
CB6F1 mice. A group of animals was immunized s.c. with 50 µg of pal-A(P)I three times, two weeks
apart. For comparison, a group was immunized with the mixture of the epitopes (P/A/I mix) using
the same amount of peptides. Splenocytes from immunized animals were re-stimulated, and cell
proliferation was assayed by CFSE staining method. Gating strategy and flow cytometry histograms
are shown in Figure S2. Simultaneously, supernatants were tested for cytokine production using a
LEGENDplex cytokine multiplex kit. Splenocytes from mice that had been vaccinated with pal-A(P)I
conjugate showed a high proliferative response (Figure 4a), and re-stimulated cells produced around
180 pg/mL IFN-γ, 75 pg/mL IL-2, and 115 pg/mL IL-10 cytokines (Figure 4b). Immunization with free
epitope peptides resulted in very low proliferative or cytokine response in all mice. These results
indicate that the applied conjugation approach greatly enhanced the T-cell response to the epitopes.
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Figure 4. Immunogenicity of the compounds. (a) The provoked immune response was characterized
in a T-cell proliferation assay, and (b) the cytokine response was measured by using a LEGENDplex
bead-based immunoassay. Data represented as mean ± SEM are percent population of proliferated
splenocytes (a) and pg/mL amount of cytokines (b) (n = 3 mice/group). (***: p < 0.001; TNF-α and IL-6:
not significant).

3.4. Vaccine Efficacy

For the vaccine efficacy study, a group of five BALB/c mice were immunized with 50 µg pal-A(P)I
s.c. three times, two weeks apart (Figure 5a). Then, mice were infected i.p. with 200 µL Mycobacterium
tuberculosis H37Rv (106 CFU/mL). Intraperitoneal administration was chosen for the bacteria as the
i.p. route induces a course of slowly progressive disease [34]. Seven weeks after Mtb infection, mice
were euthanized and autopsy was performed. Lung and spleen homogenates were cultured on
Löwenstein–Jensen medium to determine the CFU (Figure 5c,d). In histologic sections prepared from
the spleen of unvaccinated control animals, rod-shaped acid-fast bacteria were observed within small
groups of epitheloid macrophages (Figure 5b). This indicates that the infection method used was
successful in modelling experimental tuberculosis. When mice were immunized with the pal-A(P)I
conjugate, lower numbers of bacteria were enumerated compared to the unvaccinated control group
(Figure 5c,d). Tissue sections of pal-A(P)I-vaccinated animals were free of visible tuberculosis-related
granulomatous lesions. With this experiment we have demonstrated the utility of this branched-chain
conjugation technique to improve the immunogenicity and protective efficacy of T-cell epitope peptides.
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Figure 5. (a) Time schedule of the vaccine efficacy experiment and (b) experimental proof of
Mycobacterium tuberculosis infection. In Ziehl–Neelsen-stained histologic sections prepared from
the spleen, numerous acid-fast rod-shaped organisms were observed ((b), arrows point at Mtb cells).
Magnification: 100× on the left panel, 600× on the right panel of (b). The vaccine efficacy of the pal-A(P)I
conjugate was proved by enumerating a lower number of Mycobacterium tuberculosis (Mtb) bacteria
from (c) spleen and (d) lung homogenates. Statistical significance was analyzed by Mann–Whitney U
test (confidence intervals: 95%).

4. Discussion

The aim of this study was to provide a simple synthetic route to improve the immunogenicity and
vaccine efficacy of T-cell epitope peptides. Synthetic long peptides (SLPs) have proven clinical efficacy,
but the production of long linear peptides is still challenging in most cases. Chemical design strategies
to avoid synthetic difficulties such as the aggregation of the growing peptide utilize branched-chain
conjugation techniques. Among procedures to make complex structures and multicomponent systems
(i.e., azide–alkyne cycloaddition, lysine branching strategy, native chemical ligation, thioether, oxime,
hydrazone or disulfide bond formation, etc.), one of the most convenient reactions is maleimide
coupling. This type of conjugation is the transfer of a thiol group and a maleimide group to a thioether
linkage. In most cases, maleimide moieties react with thiols very quickly, in an almost quantitative
manner. The thioether bond is more stable than disulfide or hydrazone bonds, and therefore its
application in bioconjugates is more reliable. Moreover, the maleimide group can be introduced as an
inexpensive heterobifunctional linker with different lengths of spacer between the carboxyl and the
maleimide groups. In this study, 6-maleimidohexanoic acid was used.

The conjugation reaction competed with the dimerization of the thiol-group-containing peptide.
The slowest dimerization was measured for the peptide where the cysteine residue was at the C-terminus
of epitope P (FFGINTIPIAC) (Scheme 2b). This observation was in line with previous studies that
showed lower dimerization rates for C-terminal Cys compared to N-terminal cysteine-containing
peptides [35]. In the design of conjugate, the peptide with the slowest dimerization was chosen to bear
the thiol moiety, and the linear chain of the other two epitopes was decorated with the maleimide group.

The most important issue in vaccine development is to balance safety with efficacy. The use of
minimal epitope sequences which can trigger the desired immune response is a safe approach, but
the low immunogenicity needs to be addressed. Recent trends in synthetic vaccine research focus on
the use of lipidic adjuvants that can be recognized by Toll-like receptors (TLRs), especially TLR2 and
TLR4 [36]. Palmitic acid incorporation strongly improved the immunogenicity of the construct: both
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the T-cell proliferation and the cytokine production increased significantly compared to unconjugated
epitope peptides. The T-cell response to pal-A(P)I conjugate was characterized by a Th1/Th2 cytokine
pattern with prominent expression of IFN-γ, IL-2, and IL-10 (Figure 4b). Moreover, the pal-A(P)I
conjugate showed a relevant vaccine efficacy in a slow-progression tuberculosis model experiment
(Figure 5).

In summary, our study provides a convenient synthetic route to improve the immunogenicity
of short, linear T-cell epitope peptides. Furthermore, a structure–activity relationship was
observed—namely, the more folded structure showed higher cellular uptake. We assume that
the enhanced immunogenicity is the consequence of the improved internalization to antigen-presenting
cells. Finally, these results highlight the importance of the appropriate formulation of epitope peptides
which allow the development of epitope-based vaccine candidates.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-393X/7/3/101/s1,
Table S1: Methods and results of the hemolytic and cytotoxicity assays, Figure S1: gating strategy applied in the
cellular uptake measurement;, Figure S2: flow cytometry histograms of the splenocyte proliferation assay.
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