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A B S T R A C T

In general, the process of superplastic deformation is regarded as steady-state so that the flow stress is given as a
function of the strain rate only, thereby emphasizing the significance of the strain rate sensitivity and its de-
termining methods. In this work, in addition to the important role of the strain rate sensitivity, it is shown that it
is necessary also to consider the stability criteria for real, stable superplastic deformation through other factors
such as work hardening. A possible scenario is proposed to describe the process whereby the work hardening
rate may stabilize the deformation process when a perturbation occurs in the cross-section of the sample. The
assumption of a work hardening effect is confirmed by its application for interpretation of the systematic de-
viations observed between the strain rate sensitivities determined experimentally using different experimental
methods.

1. Introduction

There are two important characteristics of superplastic deformation.
First, superplastic materials exhibit stability in tensile testing, leading
to extremely high, neck-free elongations of several hundreds of percent.
Second, superplastic materials are characterized by high values for the
strain rate sensitivity (SRS). According to many experimental results
[1–3], there is an unambiguous correlation between the maximum
elongation and the corresponding strain rate sensitivity, m, as shown in
Fig. 1. Due to this relationship, many studies have been focused on a
determination of the SRS rather than the tensile elongation when the
ductility and/or the superplastic behavior of materials is investigated.

In general, a determination of the SRS is conducted by using the
stress-strain rate ( −σ ε̇) relationship which is expressed as

=σ Kε̇m (1)

where K is a temperature-dependent material constant. Using eq. (1),
the strain rate sensitivity parameter = ∂

∂( )m lnσ
lnε̇ is the slope of a double-

logarithmic plot of −lnσ lnε̇ taken at any selected strain rate. Because
of the significance of this parameter, several methods were developed
including tensile testing [4–9], impression creep [3,10,11] and depth-
sensing indentation testing [12–16] for determinations of the SRS.

Considering the conventional tensile tests, the main methods for a

determination of SRS are shown schematically in Fig. 2.
Individual specimens may be deformed by different (ε̇1 and ε̇2) strain

rates (see Fig. 2a) and then the corresponding flow stresses σ1 and σ2
obtained at a specific (constant) strain can be used for an estimation of
the SRS as

= −
−

=m lnσ lnσ
lnε lnε

ln σ σ
ln ε ε˙ ˙

( / )
( ˙ / ˙ )

2 1

2 1

2 1

2 1 (2)

In practice, alternative and more usual strain rate changes or jumps
from ε̇1 to ε̇2 are imposed on a single specimen (see Fig. 2b) and the
corresponding flow stresses σ1 and ′σ2 are used to determine the so-called
mjump SRS which is defined as:

=
′ −

−
=m

lnσ lnσ
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ln ε ε˙ ˙

( / )
( ˙ / ˙ )jump
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2 1

2
,

1

2 1 (3)

As a general remark, experimental results [4,5] show that in de-
terminations of the SRS at a given strain the value of m obtained by eq.
(2) is not the same as that of mjump obtained by eq. (3). For example, for
the Al–33Cu superplastic alloy it was shown that the value of mjump

(∼0.55–0.75) was systematically higher than the value of m
(∼0.3–0.7) [5]. Furthermore, the value of mjump remained nearly con-
stant over a wide range of strain at a given value for the ratio ε ε˙ / ˙2 1 but
the value was dependent upon the specific ratio of ε ε˙ / ˙2 1.
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Another general remark is related to the overall stability of the
superplastic materials. It is difficult to believe that tensile testing of up
to several hundreds of percent, even when occurring with an overall
visual homogeneity, does not incur the localized formation of a tem-
porary neck.

The present research was initiated to investigate the stability of
tensile deformation in superplastic materials by applying appropriate
stability criteria. The role of work hardening is examined as a possible
scenario for stabilizing the effect of the superplastic deformation.

2. Stability criteria for plastic deformation during tensile testing

The simplest mode for deformation is the tensile test which is easily
described and interpreted. For tensile deformation of a specimen having
an instantaneous homogenous gauge length of l = l(t) and a cross-sec-
tional area of A=A(t) at time t, the derivation in time is of the form

≥ ≤l and A˙ 0 ˙ 0 (4)

and, apart from a very small amount of elastic deformation, the volume
of the specimen is considered constant. This means that at every time, t,
it follows that

⋅ = ⋅ =l A l A constant0 0 (5)

from which

⋅ + ⋅ =l A l A˙ ˙ 0.

Furthermore, during tensile testing, from the definition of strain,
=ε l lln( / )0 , the strain rate, ε̇, of the sample is given as

= = −ε l
l

A
A

˙
˙ ˙

(6)

It is necessary to now consider the most frequent stability criteria on
the bases of the change of the cross-section of the specimen.

2.1. Hart-type criterion

According to the Hart-type criterion [17], the deformation may be
regarded as a stable process if the possible local deviation of the cross-
section, ∂A, is decreasing in time. Physically, this means that a smaller
cross-section will decrease at a slower rate. Therefore, the Hart-type
criterion is mathematically expressed as

∂
∂

≤A
A
˙

0 (7)

Since <A A/ ˙ 0, the inequality in eq. (7) can be treated in the fol-
lowing form:

∂
∂

≥ln A
lnA

˙
0 (8)

It should be noted that in practice eq. (7) does not provide a sa-
tisfactory and explicit criterion for the overall stability because it may
be fulfilled even if the ratio of the diameters of the neck and the other
parts of the sample remain unchanged.

2.2. Fortes-type criterion

Concerning the Fortes-type stability criterion [18], the deformation
process is stable if the larger cross-sectional area decreases at a faster
rate so that the following relationship is valid:

∂
∂

≥ln A
lnA

˙
1 (9)

Taking into account the relationship given in eq. (6) between strain
rate, ε̇, and the change rate, Ȧ, of the cross-section, the criterion in eq.
(9) can be equivalently described in the following form:

∂
∂

≥ε
A
˙ 0 (10)

where this means that the strain rate is faster for a larger cross-section
so that the ratio of the neighboring cross-sections tends to one. Com-
paring eqs. (8) and (9), it is necessary to emphasize that mathematically
the Fortes-type criterion is stronger than the Hart-type criterion. Phy-
sically, the Fortes-type condition includes not only the Hart-type cri-
terion in the case of a local deviation in the cross-section but it also
prescribes a ceasing of such deviation. This means that if a neck occurs
in the sample then both conditions require a lower changing-rate of the
cross-section of the neck (as in eq. (8)) and, according to the stronger

Fig. 1. Relationship between strain rate sensitivity and maximum elongation
for several metals [1–3].

Fig. 2. Main methods for determination of the SRS carried out by: a) different
measurements on individual specimens and b) a strain rate jump on a single
specimen.
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Fortes-type condition in eq. (9), the neck should disappear during fur-
ther deformation. This condition is equivalent to the lower strain rate
occurring in the neck relative to that of the remaining normal or uni-
form part of the sample (see eq. (10)).

3. The stabilizing effect of the SRS in quasi-stable tensile
deformation

As already noted, the relationship between the SRS and the max-
imum tensile elongation is well documented both experimentally [1–3]
and theoretically [19]. Taking into account the relevant stability cri-
teria, it is first necessary to investigate the effect of the SRS on the
general stability of superplastic deformation.

It is assumed that a plastic instability occurs as neck formation in
the specimen. It is well established that higher values of m relate to a
more effective resistance to neck growth [19]. For example, using eq.
(1) for =m 1 for the case of Newtonian viscous flow, as the force, F, is
constant at any cross-sectional position along the longitudinal axis of
the sample, it is possible to write:

⋅ = ⋅ ⋅ = =σ A K ε A F const˙ . (11)

Thus, substituting the value of ε̇ by − A A/̇ from eq. (6) leads to

⋅ ⋅ =K A
A

A const
˙

. ,

from which

=A const˙ . (12)

at any cross-sectional point along the sample. This means that even if a
neck is present it will not propagate.

In general, using eq. (1) it can be shown that the higher the value of
the SRS so the larger the maximum elongation [19]. Assuming that a
neck with a cross-section of A2 occurs at time t0 on a specimen having a
cross-section of A1, and assuming that the neck propagates, so the time
interval t t( , )0 is given by the following conditions:

= =A t
A t

α A t
A t

α( )
( )

and ( )
( )

2 0

1 0
0

2

1 (13)

It is now possible examine the effect of m on the maximum elon-
gation that may be reached within this time interval. Thus, denoting the
strain rates of the neck and the remaining part of the sample as ε̇2 and

ε̇1 , respectively, the constant force, F, along the sample leads through
eq. (1) to:

⋅ ⋅ = ⋅ ⋅ =K A ε K A ε F˙ ˙m m
2 2 1 1

from which, using eq. (6), there is the following relationship:

⋅ = ⋅A A
A

A A
A

˙ ˙
m m

2
1/ 2

2
1
1/ 1

1

or in the differential form it may be expressed as

⋅ = ⋅A dA
A

A dA
A

m m
2
1/ 2

2
1
1/ 1

1 (14)

Integrating both sides of eq. (14) over the time interval, t t( , )0 leads
to:

∫ ∫=− −A dA A dA
A t

A t
m

A t

A t
m

( )

( )

2
1 1

2
( )

( )

1
1 1

1

2 0

2

1 0

1

(15)

Then using the ratios given in eq. (13), eq. (15) gives

= ⎡
⎣⎢

−
−

⎤
⎦⎥

⋅A t
α
α

A t( )
1
1

( )
m

m

m

1
0
1/

1/ 1 0

It is noted that this latter relationship is valid if the deformation in
the neck is negligible. The relationship then permits a calculation of the
percentage elongation, δ m( ), of the sample as a function of the SRS in
the time interval t t( , )0 . Beside a small, diffuse neck, δ m( ) may be ex-
pressed approximately in the following form:

= ⎧
⎨⎩

⎡
⎣⎢

−
−

⎤
⎦⎥

− ⎫
⎬⎭

⋅δ m α
α

( )[%] 1
1

1 100
m

m

m1/

0
1/

(16)

Fig. 3 shows the effect of m on the value of δ m( ) predicted by eq.
(16) for a final 15% variation in cross-section ( =α 0.85) at different
initial conditions as represented by the individual α0 values. It is readily
apparent that in all cases the maximum elongation depends strongly on
the value of the SRS. The value of δ m( ) increases with increasing m and
this is consistent with the extensive experimental data shown in Fig. 1.
The same phenomenon of neck formation and the effect of SRS on the
development of the neck was examined earlier in a detailed experi-
mental investigation using the superplastic Zn–22Al eutectoid alloy
[20].

Considering the stability criteria, it is concluded that based on eq.

Fig. 3. The expected maximum elongation, δ(m), as a function ofthe SRS for different values of α0 (see eq. (13)).
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(1), without the effect of work hardening, the superplasticity arises
because of the general material resistance to the development of the
neck but not to the neck formation per se. Thus, the higher the SRS so
the lower the rate at which the neck develops. Furthermore, at any time
along the sample there is a valid condition given by

∂
∂

<ε
A
˙ 0

so that the Fortes-type stability criterion is not working in this case
where a neck is formed and then exists through the whole deformation.
This means, therefore, that the conventional eq. (1) represents in
practice only a quasi-stable criterion for tensile tests.

4. The stabilizing effect of work hardening

For real, stable superplastic deformation, where the Fortes criterion
should be satisfied, other factors characterizing the process of de-
formation must also be considered. This means that, in addition to the
SRS, the effect of work hardening is another important factor in the
analysis. In general, the flow stress at a given strain, ε, for any material
depends on both the strain rate and the work hardening rate, n, through
the relationship [19,21]:

= ⋅ ⋅σ K ε ε˙m n (17)

For room temperature deformation with considerable work hard-
ening, the Hart stability criterion may also be written as

≥ −dσ
dε

σ m(1 ).
(18)

Thus, substituting eq. (17) into eq. (18), the following criterion is
obtained for the strain of homogeneous stable deformation:

≤
−

ε n
m1 (19)

Equation (19) shows that for higher values of m and n the necking
occurs at higher strains. In effect, therefore, the work hardening sta-
bilizes the homogenous deformation.

For superplastic deformation where ≈m 0.5, the value of n is neg-
ligible so that ≈n 0 and this leads to the general use of eq. (1).
However, it will be shown that, even if n is small, its change during
superplastic deformation may yield a stabilization effect against
necking. In this model, the stabilizing effect of the work hardening
appears in the form of an increase in the flow stress which contrasts
with that characterizing the steady-state condition as described by eq.
(1). It can be seen that using eq. (17) this condition may not be satisfied
in every case. For example, at strains of <ε 1 the effect of work hard-
ening, as given by >n 0, will cause a decrease in stress relative to the
stationary value. In order to avoid such problems in the analysis, it is
clear that another relationship other than eq. (17) should be used to
take into account the effect of work hardening. Considering the de-
formation process of a sample by tensile testing, both the dimensionless
quantities of ε and l l/ 0 equally characterize the amount of deformation,
where l0 is the initial and l is the momentary length of the sample.
However, from the viewpoint of this analysis, there is a significant
difference between these quantities because while =ε ln l l( / )0 starts
from 0 the value of l l/ 0 goes from 1. This means that it is reasonable to
use the quantity l l/ 0 instead of ε in eq. (17) to take into account the
effect of work hardening so that

= ⋅ ⋅σ K ε l l˙ ( / )m n
0 (20)

From the definition of ε, the ratio l l/ 0 may be expressed as =l l e/ ε
0 ,

so that eq. (20) takes the following form:

= ⋅ ⋅σ K ε e˙m εn (21)

Applying eq. (21) for an investigation of the Fortes criterion given
by eq. (10), starting from the condition of = ⋅ =F σ A constant along
the sample, at any given moment there is

⋅ ⋅ ⋅ =A K ε e F˙m εn

from which

⋅ ⋅ =A ε e F
K

˙m εn

Taking the logarithmic form of both sides leads to

+ ⋅ + ⋅ = ⎛
⎝

⎞
⎠

=lnA m lnε n ε ln F
K

˙ constant

or the following differential form:

∂ + ⋅∂ + ⋅∂ + ⋅∂ =lnA m lnε n ε ε n˙ 0 (22)

Equation (22) expresses the case where the deformation is not
homogenous. Different cross-sections, A, are forming not only by dif-
ferent rates, ε̇, but also with different work hardening rates, n. Thus,
using the usual transformations:

∂ = ∂ ∂ = ∂lnA A
A

lnε ε
ε

, ˙ ˙
˙

and

⎜ ⎟∂ = ∂ ⎛
⎝

⎞
⎠

= ∂ ⎛
⎝

⎞
⎠

= − ∂ε ln l
l

A
A

A
A

ln
0

0

eq. (22) may be rewritten as:

⋅ ∂ = − ∂ − ⋅∂ + ⋅ ∂m ε
ε

A
A

ε n n A
A

˙
˙

from which the following differential form is derived:

∂
∂

= − ⋅⎛
⎝

− + ⋅ ∂
∂

⎞
⎠

ε
A

ε
m

n
A

ε n
A

˙ ˙ 1
(23)

Basing on this relationship, the Fortes-type criterion in eq. (10) is
given as:

− + ⋅ ∂
∂

≤n
A

ε n
A

1 0

or

∂
∂

≤ − −n
A

n
Aε

1
(24)

This represents in practice a complicated gradient effect of in-
homogeneous deformation, as the gradient in deformation will result
also in a gradient in the work hardening rate.

In order to demonstrate the stabilizing effect of work hardening, it is
necessary to investigate a simple case for the interpretation of the
Fortes-type criterion given by eq. (24).

Consider again the problem discussed in section 3. Assume that a
neck with cross-section of A2 occurs at t0 on a specimen having a cross-
section of A1 and suppose also that the neck propagation within the
time interval t t( , )0 may be described by eq. (13). Furthermore, assume
that the work hardening of the regions having cross sections A2 and A1

are characterized by the work hardening rates of n2 and n1, respec-
tively. In order to simplify the analysis, assume that

∂ = − =n n n k
ε2 1 (25)

where k is a constant having a value of ≥k 0. This assumption is rea-
listic in practice because, following the initial transient period, n2 is
expected to approximate to n1 if ε is sufficiently large.

Using the ratio =A A α/1 2 0 at the moment, t0, of necking, as in eq.
(13), leads to

∂ = − = ⋅ −A A A A α( 1)2 1 1 0 (26)

Substituting eqs. (25) and (26) into eq. (24), and assuming n is
small, leads to

≥ − − ≈ −k α n α(1 )(1 ) (1 )0 0 (27)
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which is the main point of the stabilizing effect of work hardening. The
relationship given by eq. (27) means that, if the neck is sufficiently
hardened and fulfills the Fortes-type criterion, it will gradually dis-
appear.

It is also interesting to examine the situation where the hardening of
the neck is not sufficiently large so that < −k α( 1 )0 and the Fortes-type
criterion in eq. (10) is not valid. It is now possible to examine the ways
in which the work hardening parameter, k, in eq. (25) influences the
total elongation.

Using eq. (25) and the constancy of the force along the sample:

⋅ ⋅ ⋅ = ⋅ ⋅K A ε e K A ε e˙ ˙m n ε m n ε
1 1 2 21 2

so that it may be derived that

= ⎡
⎣⎢

−
−

⎤
⎦⎥

⋅
−

−A t
α e
α e

A t( ) ( )
m k m

m k m

m

1
0
1/ /

1/ / 1 0

leading to the percentage elongation, δ k m( , ), of the sample in the time
interval, t t( , ),0 is given by

= ⎧
⎨⎩

⎡
⎣⎢

−
−

⎤
⎦⎥

− ⎫
⎬⎭

⋅
−

−
δ k m α e

α e
( , )[%] 1 100

m k m

m k m

m1/ /

0
1/ / (28)

It is noted that for the case of =k 0, where there is no gradient in
the work hardening rate, eq. (28) leads back to eq. (16) containing only
the effect of the SRS.

Fig. 4a shows the maximum elongation predicted by eq. (28) in the
function of the strain rate sensitivity, m, at different values of k for the
situation where =α 0.980 and =α 0.85. In all cases, < −k α1 0 in the
Fortes type stability and the neck continuously develops. However, it is
apparent that a small amount of neck hardening effectively decreases
the rate of neck development and increases the total elongation for the
same condition of α0 and α at any given value of m.

Fig. 4b shows the value of δ k m( , ) as a function of k, indicating the
effect of neck hardening for the same values of =α 0.980 , =α 0.85 and

=m 0.5. It can be seen clearly that the higher the value of k so the
larger elongation that is expected. Without the effect of any work
hardening so that =k( 0) there is a maximum elongation of 160%,
whereas a small amount of neck hardening characterized by =k 0.015
increases this maximum value to 400%.

5. Effect of work hardening on the determination of the SRS

As noted in the Introduction, the value, mjump, of the SRS determined
by using the conventional strain rate change method on one specimen,
as in eq. (3) and Fig. 2, is generally higher than the value of mmeasured
from a series of tests carried out on individual specimens at different
strain rates (eq. (2)). Considering the effect of work hardening dis-
cussed in the preceding section, the difference between mjump and m
may be readily interpreted.

For the case of deforming different specimens at different strain
rates, it may be assumed that within a narrow range of strain rate the
work hardening will depend only on the deformation. Therefore, the
stresses σ1 and σ2 of the samples deformed by different strain rates ε̇1 and
ε̇2, respectively, at a given strain of ε0 may be characterized by the same
value of n, that is

= ⋅ ⋅σ K ε e˙ m ε n
1 1 0

and

= ⋅ ⋅σ K ε e˙ m ε n
2 2 0

which together lead to an SRS that is free of a hardening effect so that
=m ln σ σ

ln ε ε
( / )
( ˙ / ˙ )

2 1
2 1

.
When applying the strain rate change method, and similar to the

situation where a neck occurs, because of the transient phenomenon
caused by the strain rate change when the strain rate jumps from ε̇1 to ε̇2
at a strain of ε0, the work hardening, n, in eq. (21) increases from n1 to

n2 where >n n( )2 1 . This leads to an increase in stress from

= ⋅ ⋅σ K ε e˙ m ε n
1
,

1 0 1

to

= ⋅ ⋅σ K ε e˙ m ε n
2
,

2 0 2

This gives an SRS of the form

= = + −m
ln σ σ
ln ε ε

m n n ε
ln ε ε

( / )
( ˙ / ˙ )

( )
( ˙ / ˙ )jump

2
,

1
,

2 1

2 1 0

2 1 (29)

and this is higher than the subscript-free value ≥m m( )jump as >ε ε˙ ˙2 1,
>ln ε ε( ˙ / ˙ ) 02 1 and − ≥n n 02 1 . Furthermore, on the basis of eq. (29) it is

also clear that the value of mjump may depend on the ratio of ε ε˙ / ˙2 1 as it
was observed experimentally [5].

In the present analysis, a possible effect of work hardening is sug-
gested. Nevertheless, it should be emphasized that in general the global
superplastic flow may show real strain hardening (∂ ∂ >σ ε/ 0) [6,21,22]
or it may be accompanied by strain softening (∂ ∂ <σ ε/ 0) [22–24]. In
the latter case, it is well established that the effect of dynamic recovery
and/or dynamic recrystallization is stronger than the effect of disloca-
tion multiplication. The present analysis demonstrates that if a neck is
formed, but with a higher work hardening relative to the work hard-
ening of the remaining part even at the microscopic level, it may no
longer develop but instead may disappear. This leads to the possible
stabilizing effect of work hardening. As a theoretical analysis, there are
numerous assumptions in the present analysis but nevertheless the
overall trends and the resultant conclusions are based firmly on, and are
consistent with, the available experimental evidence.

4. Summary and conclusions

1) On the basis of the stability criterions, it is shown that, when
taking only the effect of the SRS into account, so a higher the strain rate
sensitivity gives a higher maximum elongation. Nevertheless, the large
deformation in superplasticity arises because of the material resistance
to neck development and not to a lack of neck formation. Thus, the
deformation process for tensile testing is regarded as quasi-stable.

2) In order to satisfy the stability criterions for real, stable super-
plastic deformation, other factors characterizing the deformation pro-
cess must be considered. A scenario is suggested based on the stabi-
lizing effect of work hardening in tensile testing using a new constitute
equation containing both the SRS and the work hardening rate. It is
shown that in every case the higher rate of neck hardening improves the
maximum elongation expected for any given SRS. Furthermore, if the
occurring neck is sufficiently hardened, fulfilling the Fortes-type cri-
terion, it will cease to develop and instead it will disappear.

3) The assumption of a work hardening effect, as well as the use of a
new constitutive relationship, is confirmed by possible applications in
the interpretation of the differences that are often observed experi-
mentally when the values of the SRS are determined using different
experimental methods.
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