
molecules

Article

Novel Polycondensed Partly Saturated β-Carbolines
Including Ferrocene Derivatives: Synthesis,
DFT-Supported Structural Analysis, Mechanism of
Some Diastereoselective Transformations and a
Preliminary Study of their In Vitro
Antiproliferative Effects

Kinga Judit Fodor 1, Dániel Hutai 1, Tamás Jernei 2 , Angéla Takács 3, Zsófia Szász 3,
Máté Sulyok-Eiler 4, Veronika Harmat 4, Rita Oláh Szabó 2, Gitta Schlosser 2,5 ,
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Abstract: Use of a Pictet-Spengler reaction of tryptamine and l-tryptophan methyl ester and
subsequent reduction of the nitro group followed by further cyclocondensation with aryl aldehydes
and formyl–substituted carboxylic acids, including ferrocene-based components, furnished a series of
diastereomeric 6-aryl-substituted 5,6,8,9,14,14b-hexahydroindolo[2′,3′:3,4]pyrido[1-c]-quinazolines
and 5,5b,17,18-tetrahydroindolo[2′,3′:3,4]pyrido[1,2-c]isoindolo[2,1-a]quinazolin-11-(15bH)-ones with
the elements of central-, planar and conformational chirality. The relative configuration and the
conformations of the novel polycyclic indole derivatives were determined by 1H- and 13C-NMR
methods supplemented by comparative DFT analysis of the possible diastereomers. The structure of
one of the pentacyclic methyl esters with defined absolute configuration “S” was also confirmed by
single crystal X-ray diffraction measurement. Accounting for the characteristic substituent-dependent
diastereoselective formation of the products multistep mechanisms were proposed on the basis
of the results of DFT modeling. Preliminary in vitro cytotoxic assays of the products revealed
moderate-to-significant antiproliferative effects against PANC-1-, COLO-205-, A-2058 and EBC-1 cell
lines that proved to be highly dependent on the stereostructure and on the substitution pattern of the
pending aryl substituent.

Keywords: β-carboline; diastereoselectivity; conformation; ferrocene; organic synthesis; NMR
spectroscopy; X-ray diffraction; DFT calculations; cytotoxic activity; structure-activity relationships
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1. Introduction

Aromatic or partly saturated β-carbolines can be found as key structural motifs in a variety of
biologically active compounds, including both synthetic and natural products that display remarkable
pharmacological activities, e.g., antimalarial [1], cardioprotective [2], trypanocidal and neurotoxic [3]
effects. A number of compounds belonging to this group of heterocycles have also been identified as
potent anticancer agents with marked cytotoxicity against malignant human cell lines [4,5]. Since the
last years have witnessed a growing interest in novel chemotherapeutic agents with a multitarget
mechanisms of action, it is of pronounced importance that representative tetrahydro-β-carbolynes
proved to be inhibitors of microtubule-crosslinking mitotic kinesin Eg5 [6,7], cell division-inducing
cyclic dependent kinase (CDKs) [8,9] as well as topoisomerase I and II [8,10]. Pointing to an additional
mode of antiproliferative action of β-carbolines, a few representative 9-substituted harmine alkaloids
were identified as DNA-intercalators [10]. β-Carboline hybrids with aryl linkers were also shown to
exhibit substantial antiproliferative activity on a wide range of malignant human cells acting mainly
by CT-DNA intercalation [11]. On the other hand, synergistically strengthening the antiproliferative
effects associated with selective binding-based classical targeted mechanisms of action, electron transfer
processes via the Fenton pathway induced by redox active fragments, e.g., by suitably positioned
ferrocenyl group(s) in the molecular scaffold, may play a key role in mitochondrial generation of reactive
oxygen species (ROS), e.g., nitric oxide, superoxide anion and other forms of free radicals [12–14]
that can be involved in biological regulatory processes finally leading to programmed cell death
(apoptosis) [15]. Supporting the relevance of this view, convincing preclinical evidence about the
interplay between particular binding-induced- and redox signalling pathways implicated in cancer
has been disclosed [16]. Accordingly, due to their marked effects on malignant cell lines, a plethora of
ferrocene derivatives with diverse molecular architectures have been emerged as potent antiproliferative
agents in the last decades [17–21].

2. Results and Discussion

Prompted by the aforementioned highly promising precedents, in the frame of our ongoing
research aimed at identification of novel leads including ferrocene hybrids [22–29] we envisaged
atryptamine- and tryptophan-based synthesis, detailed structural analysis and preliminary in vitro
evaluation of 6-aryl-substituted 5,6,8,9,14,14b-hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]quinazolines
(I), 5,5b,17,18-tetrahydroindolo[2′,3′:3,4]pyrido[1,2-c]isoindolo[2,1-a]quinazolin-11(15bH)-ones (II),
and (Sp)-2-formyl-1-ferrocenecarboxylate-derived 5,5b,11,14b,16,17-hexahydroindolo[2′,3′:3,4]py-
rido[1,2-c]ferroceno[c]pyrrolo[1,2-a]quinazoline-11(14bH)-ones (III), featuring alkaloid-like
frameworks with diverse stereostructures (Figure 1).
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Figure 1. Three types of the targeted polycyclic β-carbolines with diverse streostructures derived from
tryptamin (R = H) and l-tryptophan (R = CO2Me).

2.1. Synthesis and Structural Analysis of the 6-Aryl-Substituted
5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]-pyrido[1,2-c]quinazolines

A straightforward retrosynthetic analysis of pentacycles type I set up an obvious synthetic
pathway starting with a Pictet-Spengler (PS) annelation involving tryptophan-based precursors and
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2-nitrobenzaldehyde followed by nitro group reduction and subsequent aldehyde-mediated cyclisation
of the resulting 2-aminophenyl-substituted β-carboline framework to construct the targeted pentacyclic
products (Scheme 1). Accordingly, tryptamine (1) was first converted into the nitrophenyl derivative 3
by an efficient PS protocol using an acetic acid/boric acid system at reflux temperature to promote the
reaction [30] which practically went to completion within 4 h and allowed the isolation of the product
as a racemic mixture in 85% yield. The analogous reaction of the methyl ester of l-tryptophan (2),
conducted under the same conditions, gave a hardly separable 1/2 mixture of cis- and trans-diastereomer
esters 4/C and 4/T. By means of flash column chromatography on silica using CH2Cl2-MeOH (80:1) as
eluent, 4/T could be isolated in pure form in acceptable yield (42%), but the complete separation of 4/C
from 4/T could not be achieved.
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Scheme 1. Synthetic routes to novel diastereomeric 6-aryl-5,6,8,9,14,14b-hexahydroindolo-[2′,3′:3,4]pyrido-
[1,2-c]quinazolines (the relative/absolute configuration is presented for compounds with R = H/R =

CO2Me.).

The Pd-catalysed hydrogenation of 3 and 4/T gave the expected 1-(2-aminophenyl)-substituted
β-carbolines (racemic 5 and enantiopure 6/T in 82% and 75%, resp.) which were then reacted with
aromatic aldehydes 7a–k in a 5/1 mixture of MeOH and AcOH at reflux temperature affording
tetracycles of type 8 and 9. The facile cyclisations of 6/T could be completed within 2 h providing most
of the targeted esters 9a–d,f–h/T1 as single enantiomers that were isolated in 62–73% yield (Table 1)
with a well-defined stereostructure, that was confirmed for 9f/T1 by single-crystal X-ray diffraction
(Figure 2).

Employing prolonged reaction times the isolated yields could not be increased as the ring closures
were accompanied by decomposition. (T1 is an arbitrary designation of the relative configuration as
will be discussed later along with T2 and T3 representing two further types of possible diastereomers.)
The unanimous and rigid conformation of 9a–d,f–h/T1, determined by the carbon- and nitrogen
stereogenic centres (C-6, C-8, C-14b and the non-inverting N-7) as well as by the conformational
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chirality of ring C, is clearly reflected from the highly similar (practically almost identical) 1H- and
13C-NMR parameters obtained for the skeletal atoms of this series of esters (cf. Experimental).

Table 1. Isolated yields of pentacyclic compounds types 8 and 9 presented in Scheme 1.

Product Yield (Reaction Time) Product Yield (Reaction Time)

8a/T1 37% (0.5 h)/77% (12 h) 8i/C1/T1 80% (0.5 h) e/35% (12 h)e

8b/T1 75% (1 h)/72% (12 h) 8j/T1 80% (1 h)/87% (12 h)
8c/T1 79% (1 h)/76% (12 h) 8k/T1 69% (1 h)/71% (12 h)
8d/T1 74% (1 h)/78% (12 h) 9a/T1 64% (2 h)
8e/T1 80% (1 h)/75% (12 h) 9b/T1 70% (2 h)
8f/C1 63% (0.5 h) 9c/T1 62% (2 h)

8f/C1/T1 80% (4 h) a/75% (8 h) b 9d/T1 73% (2 h)
8g/C1 39% (0.5 h) 9f/T1 71% (2 h)

8g/C1/T1 52% (4 h)c 9g/T1 52% (2 h)
8h/C1/T1 72% (0.5 h) d/25% (12 h) d 9h/T1 56% (2 h)

a For a ca. 1:3 mixture of cis (C1) and trans (T1) diastereomers. b For a ca. 1:4 mixture of cis (C1) and trans (T1)
diastereomers. c For a ca. 3:7 mixture of cis (C1) and trans (T1) diastereomers. d For a ca. 4:3 mixture of cis (C1) and
trans (T1) diastereomers. e For a ca. 1:1 mixture of cis (C1) and trans (T1) diastereomers.
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Of note is the fact that diagnostic interactions detected between proton pairs H-6/H-8 and
H-14b/H-2′,6′ in the NOESY spectra of 9a–d also confirm the trans arrangement of H-6 and H-14b as
well as the spatial proximity of H-6 and H-8. In 9a–d,f–h/T1 the axial position of H-8 thus, the equatorial
position of the methoxycarbonyl group (R), can also be regarded as evidenced by the characteristic
coupling pattern of the signals originated from the skeletal protons H-8, H-9a and H-9b featuring a dd
split of H-8 signal with coupling constants at around 8 Hz and 4 Hz.

The reactions of 6/T with aldehyde components 7e,i–k carrying substituents adjacent to the formyl
group gave highly complex mixtures of undefined components. The failure of these experiments can
probably be attributed to an interference of the CO2Me group with the negatively polarized carbonyl
oxygen and the aromatic ring, the two rotating molecular fragments that avoid to get in proximal
position destabilized by steric crowding (in case of bulky 7e,j) or electrostatic repulsion (in case of 7i,k
with negative fluorine-centre).

The reactions of precursor 5 with benzaldehydes 7a–k were carried out under the same conditions
using MeOH-AcOH (5:1) as solvent at reflux temperature. Indicating the acceleration of ring
closures 5+7b–e,j,k→8b–e,j,k/T1 enabled by the electron-withdrawing substituents on the aldehyde
components, no significant change could be detected in the yields of the products when the reaction
was conducted for a substantially longer time (1 h: 65–80%, 12 h: 63–87%). In keeping with this
observation, in the lack of activation effect induced by electron-withdrawing group on the aryl ring,
the diastereoselective transformation 5+7a→8a/T1 needed a significant extension of reaction time to
produce a substantially increased isolated yield (1 h: 37%, 12 h: 77%). Except for the non-precipitated
fraction of the products no component with well-defined structure could be unequivocally identified
by NMR in the highly complex mixtures recovered from the solutions. The stereostructure of 8a–e,k/T1
determined by the helicity of ring C and the relative configuration of the stereogenic centres C-6, N-7
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and C-14b was evidenced by the NOESY interactions detected between H-14b and the protons of
the 6-Ar group as well as by the highly similar chemical shifts of 1H/13C signal pairs H-6/C-6 and
H-14b/C-14b discernible in narrow ranges of the appropriate spectra of compounds type 8/T1 verifying
to their unanimous skeletal structure. Pointing to the spectacular substituent-dependence of the
diastereoselectivity of the studied cyclocondensations, on short treatment (0.5 h) with aldehydes 7f
and 7g containing electron-donating aryl group, 5 got converted into pentacycles 8f/C1 (63%) and
8g/C1 (39%), respectively, in which H-6 and H-14b are in cis position on ring D as proved by NOESY
measurements. Besides small portions of products type 8/C1, traces of their trans counterparts (8f,g/T1)
could also be identified by NMR in the complex mixtures recovered from the solution. When aldehyde
7f was used as reactant, the extension of reaction time from 0.5 h to 4 h gave rise to a spectacular
change in the product ratio resulting in the isolation of the epimeric mixture of 8f/C1 and 8f/T1 in 80%
yield markedly enriched in the trans component (C1/T1~1/3). Further prolongation of the reaction
time to 8 h led to the isolation of an approximately 1/4 mixture of these diastereomers with slightly
decreased isolated yield of 75%, pointing to a slow development of an equilibrium system. On the
other hand, undefined decomposition processes prevented a substantial extension of the reaction
time of the formylferrocene-mediated cyclisation of 5, thus 4 h was found to be an optimal choice
allowing the isolation of the mixture of diastereomers 8g/C1 and 8g/T1 in 52% yield enriched in the
trans component (C1/T1~3/7). A series of attempts for the chromatographic separation of isomer pairs
8f/C1_8f/T1 and 8g/C1_8g/T1 failed.

It is of interest that even with only 0.5 h of treatment of 5 with formylpyridines 7h,i got readily
converted into approximately 4/3 and 1/1 mixtures of isomer pairs 8h/C1_8h/T1 and 8i/C1_8i/T1,
respectively, in high yields (72% for 8h/C1_8h/T1 and 80% for 8i/C1_8i/T1). Employing substantially
prolonged reaction time (12 h) the ratio of the diastereomers were not changed within experimental error
pointing to the fast formation of the rapidly interconverting isomers with slightly different or nearly
identical thermodynamic stability, while both diastereomer pairs could be isolated in dramatically
decreased yields (25% for 8h/C1_8h/T1 and 35% for 8i/C1_8i/T1) from the darkened reaction mixtures
indicating uncontrolled decompositions of these pyridine derivatives. On the other hand, using
3-bromopicolinaldehyde 7j, a sterically more demanding ring-closing component, the reaction of 5
practically was completed within 1 h to afford trans diastereomer 8j/T1 isolated as single product in
high yield (80%). Since after an extended reaction time (12 h) this trans diastereomer could again be
isolated in excellent yield (87%), it seems reasonable that the abovementioned decomposition of the
equilibrating isomer pars of 8h,i might take place via the appropriate cis isomer.

The experimental product distributions corroborate with the relative free energy [∆G(8/T1-8/C1)]
values (Table 2) obtained by DFT comparative analysis of the isomeric pairs carried out by B3PW91
functional [31] employing DGTZVP basis set [32] together with IEFPCM solvent model [33]. For all
calculations, a dielectric constant (ε = 28.2) was used to represent the approximate polarity of the
medium composed of the solvent mixture MeOH-AcOH (5:1). It must be noted here that the comparative
DFT modeling studies were performed on models also including ferrocene derivatives, so we selected
B3PW91 for this purpose as this functional has been demonstrated to provide an improvement
over B3LYP regarding the description of bonding parameters in metal-containing fragments with
metal-carbon bond(s) [34].

Table 2. Relative stability of diastereomer pairs 8/T1-8/C1 calculated by DFT modelling.

∆G(T1-C1) [kcal/mol] ∆G(T1-C1) [kcal/mol] ∆G(T1-C1) [kcal/mol]

8a −1.13 8e −3.06 8i +0.19
8b −1.65 8f −1.52 8j −0.75
8c −1.58 8g −0.47 8k −1.73
8d −1.48 8h +0.34
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Although the relative trans position of protons H-6 and H-14b in compounds types 8 and 9 was
unambiguously evidenced by NOESY experiments disclosing interactions between H-14b and the
protons of the proximal Ar groups, the possible N-7-inversion with simultaneous or separated flip of
ring C might allow the formation of equilibrium mixtures of three diastereomers designated as T1, T2
and T3 (Scheme 2). Their interconversions, in principle enabled by the abovementioned processes,
were modelled by the DFT analysis of 8a. The computations identified these types of conformers as
three local minima on the potential energy surface (PES) connected by saddle points representing the
corresponding transition states TS(8a/T1-T2), TS(8a/T2-T3) and TS(8a/T1-T3) (Scheme 2).
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pentacycle 8a/T1 characterised by relative free energy values and barriers of their interconversion
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Although the calculated activation barriers (Scheme 2) might point to a relative flexibility of the
skeletal structure, in agreement with the relative energetics expressed in Gibbs free energy values,
the NMR data discussed above clearly indicate that 8a/T1 can be regarded as the most stable and
practically exclusively detectable diastereomer in the analysed sample dissolved in DMSO-d6.

It is of importance that on the basis of the well-established solid-state structure of 9f supplemented
by the results of 1H- and 13C-NMR studies that disclosed highly similar chemical sifts and H-H coupling
patterns for the skeletal CH- and CH2 groups, it can be stated that all the isolated pentacyclic products
types 8 and 9 with trans relative configuration preferably adopt conformation T1. Supporting this view
about the conformational space, the same series of DFT analyses carried out for esther 9a identified
the expected diastereomers 9a/T1, 9a/T2 and 9a/T3 along with their relative energetics and activation
barriers of their interconversions proceeding through transition states TS(9a/T1-T2), TS(9a/T2-T3) and
TS(9a/T1-T3). Albeit in the minor components 9a/T2 and 9a/T3 the methoxycarbonyl group is in axial
position, the calculated relative energetics [∆G(9a/T1-9a/T2) = +4.53 kcal/mol and ∆G(9a/T1-9a/T3)
= +0.87 kcal/mol] refer to a population distribution similar to that of the conformers of 8a. We also
undertook the conformational analysis of the detectable or purely isolated cis pentacyclic products.
In 8f–i/C1 diagnostic NOE could be detected between protons H-14b and H-6. Conformation C1 was
identified by further comparative DFT studies carried out on representative model diastereomers
8f/C1 and 8f/C2. Besides the relative energetics [∆G(8f/C1-8f/C2) = +0.89 kcal/mol] diagnostic 1H-
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and 13C-chemical shifts were also calculated for the optimized structures of these isomers and
compared to a selection of diagnostic experimental data (calcd. for C1/C2/measured [ppm]: δH-14b =

5.70/5.95/5.61; δH-6 = 5.80/6.20/5.62; δH-1 = 7.50/8.22/7.21; δC-14b = 60.5/63.3/57.1; δC-6 = 79.1/84.6/73.3;
δC-8 = 39.6/50.7/38.0) suggesting that 8f/C1 is present in the DMSO-d6 solution subjected to NMR
measurements. These calculations were performed by GIAO method [35] using B3LYP functional [36]
and 6-311++G(2d,p) basis set [37]. Due to the significant steric crowdance in the endo region of the bent
ring system, 8f/C3 was not taken into account as a realistic component of the conformational space
(Scheme 3). These considerations about the skeletal conformation can also be extended to the further
detected cis products 8g–i.
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the isomerisation of 8f/C1 into 8f/C2 taking place by N7-inversion with simultaneous flip of ring C.

2.2. Preparative-, Spectral and Theoretical Studies on the Mechanism and Products of the
Substituent-Controlled Annulations of 5 and 6/T Effected by Formyl-Substituted Carboxylic Acids

In order to obtain targeted polycyclic lactams types II and III (Figure 1), using our standard
conditions with slightly prolonged reaction time (5 h), precursors 5 and 6/T were also reacted with
2-formylbenzoicacid (7l) and the enantiomerically pure planar chiral (Sp)-2-formyl-1-carboxyferrocene
(7m), respectively (Scheme 4).

The reactions of 5 and 6/T with 7l afforded polycondensed lactams 10/C1 and 11/C1 in good
yields, (88% and 71%, respectively,) pointing to fast sequential annelations that certainly proceed
via the appropriate cis pentacyclic diastereomer (8l/C1 and 9l/C1). However, on treatment with 7m
the racemic precursor 5 got converted into cis pentacyclic product 8m*/C1 in mediocre yield (47%)
with well-defined relative and, consequently, absolute configuration ultimately controlled by the
planar chiral ferrocene unit embodied in the heterocyclic skeleton. This relatively rigid molecular
architecture is stabilized by an intramolecular H-bond involving the carboxylic group and the N-7 atom
of which basic character is probably enhanced relative to that of N-5 atom. Taking this seven-membered
chelate ring and the Sp planar chirality of the ferrocene moiety as structural constrains into account,
the absolute configuration of 8m*/C1 was deduced from the NOESY interactions of the unsubstituted
Cp ring with the proximal (C)H-14b and (N)H-5 protons.

Accordingly, the proximity of the iron centre can also be considered as evidenced by the
substantial downfield shift of the H-14b signal (6.23 ppm) relative to that measured for the racemic
ferrocenyl-substituted derivative 8g/C1 (5.49). The skeletal structure and the relative- and consequently,
the absolute configuration of l-tryptophan-derived 11/C1 were disclosed by 1H- and 13C-NMR methods.
The presence of the fused isoindolone fragment was evidenced by the HMBC correlation between the
signals of H-15b and C-11.

The characteristic coupling pattern of the signals of the skeletal protons H-17, H-18a and H-18b

featuring a dd split for H-17 resonance (J = 7.9 Hz and 3.8 Hz) and the highly spectacular upfield shift
of the OCH3 singlet (2.83 ppm) can be regarded as conclusive evidences for the equatorial position
of the CO2CH3 group on ring C being in the anisotropic shielding region of ring D. This proximal
position of the CO2CH3 group and ring D was also confirmed by the diagnostic NOE’s detected
between signal pairs H-5b/H-15b and H-15/OCH3. Accordingly, the HMBC correlation and the NOE’s
involving signal pairs H-15b/C-11 and H-5b/H-15b, respectively, complemented with the highly similar
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1H- and 13C-NMR data, clearly indicate that the racemic lactam 10/C1 and its ester analogue 11/C1
with well-defined absolute configuration have identical skeletal constitution and conformation.
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6/T effected by 2-formylbenzoicacid and (Sp).2-formylferrocenecarboxylic acid 7l and 7m, respectively.
A selection of optimized structures with absolute configuration obtained by DFT modelling.

The reaction of 6/T and 7m, the two components used as single enantiomers, proved to be sluggish
resulting in the formation of trans ferrocenecarboxylate 9m/T1 in low yield (ca. 10–15% calculated for
its approximate 60% ratio in the isolated highly contaminated crude product). Due to its decreased
stability and a hardly separable array of undefined contaminations, the attempted purifications of
this ester by column chromatography and crystallisation have failed so far. It is also of note that on
prolongation of the reaction time this compound underwent a complete decomposition. On the other
hand, its skeletal structure could be identified by NMR measurements producing 1H and 13C chemical
shifts and H-H coupling constants characteristic for esters type 9/T1 with unambiguous relative- and
consequently, absolute configuration.

Contrary to intermediate carboxylates 8l/C1 and 9l/C1, the ferrocene analogues 8m*/C1 and
9m/T1 could not be forced to undergo intramolecular acylation even after using a prolonged reaction
time (12 h), instead, uncontrolled processes were promoted resulting in the formation of substantial
amounts of tarry materials that allowed the isolation of unchanged pentacycle 8m*/C1 with significantly
decreased yield (8%), while the trans isomer 9m/T1 completely decomposed. The resistance of these
carboxyferrocene derivatives to cyclization can probably be ascribed to the substantial overall strain
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and steric crowdance in the hypothetic polycyclic ferrocene lactams (12m*/C1, 13m/T1 or 13m/T3,
a more stable conformer) incorporating two diectly fused five-membered rings. This view is strongly
supported by the results of DFT modelling studies revealing dramatic reactivity difference between
the carboxyphenyl-substituted intermediates (8l/C1 and 9l/C1) and the carboxyferrocenyl analogues
(8m*/C1 and 9m/T1) in terms of their propensity to undergo cyclisation, as spectacularly shown by the
changes in the free energy values calculated for the corresponding transformations (Scheme 4).

2.3. Proposed Mechanism for the Rationalization of the Substituent- and Time-Dependent Interconversion of cis-
and trans-Pentacycles 8/C1 and 8/T1 Based on the Results of DFT Modelling Studies

Finally, we put forward a rationalization of the characteristic substituent- and time-dependent
diastereoselectivity observed in the aldehyde-mediated cyclization reactions of precursor 5 assumed
to proceed along the multistep reaction sequences outlined in Scheme 5. It was hypothesized that
preferably the nitrogen atom in ring C of enhanced nucleophilicity might initiate a re- or si-face attack on
the O-protonated aldehyde component to construct interconverting rotamer adduct pairs 12+/R_13+/R
and their diastereomer counterparts 12+/S_13+/S. In the subsequent step the rotamers 13+/R and 13+/S,
containing N-H and C-OH fragments in approximate anti position preformed for trans elimination, get
converted into iminium cations 14+/E and 14+/Z, the key intermediates capable of undergoing either
ring closure constructing diastereomeric pentacycles 8/C1 and 8/T1, or interconversion by reversible
1,3-proton-migration proceeding via the same iminium cation 15+.Molecules 2018, 23, x 10 of 26 
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Scheme 5. Possible pathways with elementary steps suitable for the interpretation of the experimentally
observed substituent-controlled aldehyde-mediated diastereoselective transformations of 5 into
pentacyclic products (8/C1 and 8/T1) and hexacyclic lactam 10/C1 as suggested by comparative
DFT modelling.
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In order to check the plausibility of this complex mechanism, comparative DFT studies
were carried out on diastereomer pairs of adducts and iminium ions (12+a,d,f,g/R_12+a,d,g/S,
13+a,d,f,g/R_13+a,d,f,g/S and 14+a,d,g/E_14+a,d,f,g/Z, respectively) and isomer iminium cations
15+a,d,f,g, a set of reasonably selected models containing substituents of markedly different electronic
properties and steric bulk (Table 3).

Table 3. Relative stability of selected isomer pairs to rationalize of the substituent- and time-dependent
interconversion of cis- and trans-pentacycles 8/C1 and 8/T1, as resulted from DFT modeling studies.

Relative Stability of Intermediate Pairs Expressed in ∆G [kcal/mol]

Diastereoselectivity of primary
coupling to 12+

12+a/R−12+a/S
−0.68

12+d/R−12+d/S
+0.17

12+f/R−12+f/S
−0.70

12+g/R−12+g/S
−0.97

Diastereoselectivity of primary
coupling to 13+

13+a/R−13+a/S
−0.21

13+d/R−13+d/S
+2.83

13+f/R−13+f/S
−3.41

13+g/R−13+g/S
−0.92

Readiness of rotation 12+/R→13+/R a 13+a/R−12+a/R
−1.48

13+d/R−12+d/R
+0.79

13+f /R−12+f/R
−2.21

13+g/R−12+g/R
−1.77

Readiness of rotation 12+/S→13+/S a 13+a/S−12+a/S
−1.95

13+d/S−12+d/S
−1.87

13+f/S−12+f/S
+0.50

13+g/S−12+g/S
−1.82

Readiness of isomerisation
14+/E→15+

15+a−14+a/E
+2.42

15+d−14+d/E
+1.04

15+f−14+f/E
+10.24

15+g−14+g/E
+13.19

Readiness of isomerisation
15+
→14+/Z

14+a/Z−15+a
−1.61

14+d/Z−15+d
+0.86

14+f/Z−15+f
−8.06

14+g/Z−15+g
−12.04

Preference of isomerization pathway
via 15+ over that via 16+

16+a−14+a
+46.10 b/+48.02 c

16+d−14+d
+35.54 b/+36.76 c

16+f−14+f
+50.63 b/+52.24 c

16+g−14+g
+51.93 b/+53.35 c

a The value can also be considered as a selectivity descriptor for the alternative primary coupling modes 5+7+
→12+

and 5+7+
→13+ disclosing the latter as the preferred one (highlighted by italics). b Refers to 16+

−14+/Z. c Refers to
16+
−14+/E.

The calculations were carried out again at B3PW91/DGTZVP level of theory supported by the
IEFPCM solvent model using a dielectric constant (ε = 28.2) to represent the polarity of the reaction
mixture MeOH-AcOH (5:1). The calculated ∆G(12+/R−12+/S) and ∆G(13+/R−13+/S) suggest that
the transformation with electron-deficient 4-nitrobenzaldehyde 7d directly results in the formation
of 8d/T1, the more stable diastereomer that can thus be regarded as the thermodynamic product,
while the reactions effected by benzaldehyde 7a, and aldehydes 7f,g carrying electron-donating
group seem to proceed via intermediates 12+/R and 13+/R leading to 8a,f,g/C1. On the other hand,
regardless to the nature of the aryl group, the ∆G(13+

−12+) values point to the preference of the
primary addition 5+7+

→13+ over the alternative step 5+7+
→12+ constructing the appropriate rotamer

and, accordingly, to the readiness of rotation 12+
→13+. It is also of pronounced importance that the

experimentally observed substantial decrease in the propensity of 8f,g/C1 to undergo epimerization to
8f,g/T1 can be adequately interpreted in terms of the reluctance of iminium cations 14+f,g/E to undergo
1,3-proton migration switching off the resonance-stabilization contributed by the electron-donating
aryl substituent [cf. ∆G(15+

−14+/E) values in Table 3].
Finally, the data calculated for the reaction sequence involving O-protonated 4-nitro-benzaldehyde

7+d, suggest that the multistep annulation of 5 with electron-deficient aldehyde components proceeds
via the primary formation of adducts type 13+/S referring to the identical outcome of the kinetic- and
thermodynamic controls.

This assumption gains support from the n→π* type donor-acceptor interaction between the amino
group and the C-1′ atom of the 4-nitrophenyl substituent as clearly seen from the HOMO-8 identified
in the optimized structure of 13+d/S (Figure 3). It must be noted here that besides this interaction the
lone pair of the amino group is also incorporated in a chelate-like intramolecular H-bond with the
protonated skeletal secunder amine residue (cf. HOMO-11: Figure 3).

In principle C1↔T1 epimerization might also take place by the revesible deprotonation of C-6
proceeding via cations type 16+ (Scheme 5) enabled by the protonation of both adjacent skeletal
nitrogen atoms, however this pathway must be regarded as hardly feasible as unequivocally evidenced
by the values of relative energetics ∆G(16+

−14+/Z) and ∆G(16+
−14+/Z) even though the enhanced
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anion-stabilizing effect of the 4-nitrophenyl group is also reflected from the calculated data (Table 3).
Finally, it seems reasonable that the pronounced readiness of pyridyl derivatives 8h,i to undergo C1↔T1
isomerization, mentioned in Section 2.1 can be attributed to a highly feasible pathway proceeding via
enamine type tautomers 17h,i (Scheme 5).
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2.4. In vitro Cytotoxic Activity of the Novel Polycyclic β-Carbolines 8/C1, 8/T1, 9/T1, 10/C1 and 11/C1

The in vitro cytotoxicity of the polycondensed β-carboline products expressed in IC50 values was
determined on four selected human tumour cell cultures (PANC-1: pancreatic carcinoma of ductal
origin, COLO-205: colon adenocarcinoma, A-2058: malignant melanoma with high invasiveness
and EBC-1: lung squamous cell carcinoma). These cell lines are dedicated models for cancerous
diseases with high mortality due to the lack of efficient chemotherapy. Thus, to find new antitumor
agents against our investigated tumour models is a principal goal in the field of oncology drug
development. The cells were treated with the compounds at 0.1–100 µM concentration range and
the cell viability was determined by real-time impedimetry analysis (adherent cells—PANC-1) or
colorimetric alamarBlue assay (cultures characterizing with weak/negligible adhesion—A2058, EBC-1,
and COLO-205) (see Supplementary Materials).

The data listed in Table 4 show negligible or moderate-to-significant antiproliferative effects
against PANC-1-, COLO-205-, A-2058 and EBC-1 cell lines that proved to be strongly dependent on
the stereostructure and on the substitution pattern of the pending aryl substituent of aldehyde-origin.
Thus, although the majority of the products do not have marked effect on the investigated cell lines,
several highly active pentacycles were identified as promising models with significant antiproliferative
activity characterized by IC50 values in the low micromolar range. It is of note that while trans
diastereomers carrying phenyl- and 3-trifluoromethylphenyl substituents (8a/T1 and 8b/T1) display
outstanding effects on each investigated cell line even in racemic form, their ester derivatives isolated
as single enantiomers (9a/T1 and 9b/T1) proved to be inactive in the tests. The strong impact of the
substitution pattern on the cytotoxicity is spectacularly indicated by the introduction of the second
trifluoromethyl group into the phenyl substituent leading to a decrease of ca. one order of magnitude
in the cytotoxicity as reflected from the IC50 values measured for 8c/T1 and by the marked difference in
the anticancer potential of the inactive 4-nitrophenyl derivative 8d/T1 and its 2-nitrophenyl-substituted
counterpart 8e/T1, the latter one exerting detectable effect on PANC-1 cell line. The combined effect of
the substituents and the stereostructure is exemplified by comparing these results to those obtained in
the tests of the highly potent racemic cis-pentacycle 8f/C1 (IC50 = 2.1–5.2 µM on the investigated cell
lines) and its inactive trans counterpart 8f/T1 both carrying 3,4,5-trimethoxyphenyl group on ring D.
Interestingly, an opposite order of diastereomer activity was manifested in the tests of the inactive
8g/C1, the racemic ferrocenyl derivative isolated as single diastereomer, and the 1:3 mixture of 8g/C1
and 8g/T1 having substantial cytotoxicity on COLO-205, A-2058 and EBC-1 cell lines. (Obviously,
the measured effects must be displayed by the trans isomer.) PANC-1 cells did not present detectable
sensitivity towards this mixture. Similar degree and profile of activity were detected for 8*m/C1,
the chiral carboxyferrocene-containing cis-diastereomer that can be regarded as a further indication of
the combined effect of the substituents and the stereostructure. In accord with this view, contrary to the
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inactive racemic lactam 10/C1, its ester derivative 11/C1, obtained as a single enantiomer, displayed
marked antiproliferative activity on three cell lines including PANC-1. Interestingly this model proved
to be inactive against COLO-205 cells.

Table 4. In vitro cytotoxic effect of novel polycondensed β-carbolines types 8–11 a, on four human
malignant cell lines characterised by half-maximal inhibitory concentration (IC50) values.

IC50 [M]

PANC-1 COLO-205 A2058 EBC-1

8a/T1 7.0 × 10−6
± 1.9 × 10−6 5.6 × 10−6

± 5.6 × 10−7 1.4 × 10−5
± 3.2 × 10−6 6.4 × 10−6

± 1.1 × 10−6

9a/T1 > 10−4 > 10−4 > 10−4 > 10−4

8b/T1 2.8 × 10−6
± 1.0 × 10−6 1.5 × 10−6

± 5.9 × 10−7 2.5 × 10−6
± 4.0 × 10−7 4.7 × 10−6

± 4.1 × 10−7

9b/T1 > 10−4 > 10−4 > 10−4 > 10−4

8c/T1 2.3 × 10−5
± 1.1 × 10−6 5.0 × 10−5

± 1.9 × 10−6 2.5 × 10−5
± 9.5 × 10−7 2.5 × 10−5

± 5.8 × 10−7

9c/T1 2.5 × 10−5
± 1.2 × 10−6 > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5

8d/T1 > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5

9d/T1 > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5

8e/T1 2.6 × 10−5
± 1.2 × 10−6 > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5

8f/C1 5.2 × 10−6
± 2.3 × 10−6 2.5 × 10−6

± 9.4 × 10−8 2.1 × 10−6
± 1.9 × 10−7 4.1 × 10−6

± 7.8 × 10−7

8f/C1/T1 b > 5.0 × 10−5 > 5.0 × 10−5 3.6 × 10−5
± 1.2510−6 1.6 × 10−5

± 3.0 × 10−6

9f/T1 1.3 × 10−5
± 1.2 × 10−5 2.0 × 10−5

± 7.6 × 10−7 2.6 × 10−5
± 1.6 × 10−6 1.1 × 10−5

± 5.2 × 10−6

8g/C1 > 10−4 > 10−4 > 10−4 > 10−4

8g/C1/T1 c > 5.0 × 10−5 3.9 × 10−5
± 1.1 × 10−6 5.0 × 10−5

± 5.4 × 10−6 2.3 × 10−5
± 1.1 × 10−6

9g/T1 > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5

8h/C1/T1 d > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5 4.7 × 10−5
± 2.1 × 10−6

9h/T1 > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5

8i/C1/T1 e > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5

8j/T1 > 5.0 × 10−5 > 5.0 × 10−5 1.4 × 10−5
± 3.2 × 10−6 5.5 × 10−6

± 1.9 × 10−7

8k/T1 > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5 > 5.0 × 10−5

8m*/C1 > 5.0 × 10−5 > 5.0 × 10−5 3.8 × 10−5
± 8.8 × 10−7 3.2 × 10−5

± 2.5 × 10−5

10/C1 > 10−4 > 10−4 > 10−4 > 10−5

11/C1 2.9 × 10−5
± 2.4 × 10−6 > 5.0 × 10−5 5.6 × 10−6

± 1.3 × 10−7 2.1 × 10−5
± 1.5 × 10−6

a Compounds 8a–g,j,k/T1, 8f,g/C1 and 10/C1 were measured in racemic form, while compounds 8m*/C1, 9a–d,f–h/T1
and 11/C1 were tested as single enantiomers. b Approximately 1:4 mixture of cis (C1) and trans (T1) diastereomers.
c Approximately 3:7 mixture of cis (C1) and trans (T1) diastereomers. d Approximately 4:3 mixture of cis (C1) and
trans (T1) diastereomers. e Approximately 1:1 mixture of cis (C1) and trans (T1) diastereomers.

3. Materials and Methods

All fine chemicals were obtained from commercially available sources (Merck, Budapest, Hungary),
Fluorochem (Headfield, U.K.), Molar Chemicals (Budapest, Hungary), (VWR, Budapest, Hungary)
and used without further purification. Merck Kieselgel (230–400 mesh, 60 Å) was used for flash
column chromatography. Melting points (uncorrected) were determined with a M-560 instrument
(Büchi, Essen, Germany). The 1H- and 13C-NMR spectra were recorded in DMSO-d6 solution in 5 mm
tubes at room temperature (RT), on a Bruker DRX-500 spectrometer (Bruker Biospin, Karlsruhe, Baden
Württemberg, Germany) at 500 (1H) and 125 (13C) MHz, with the deuterium signal of the solvent as the
lock and TMS as internal standard (1H, 13C). The 2D-COSY, NOESY, HSQC, and HMBC spectra were
obtained by using the standard Bruker pulse programs cosygpppqf (2D COSY with gradient pulses for
selection and purge pulses before relaxation delay d1) for COSY, noesygpphpp (2D phase sensitive
NOESY with gradient pulses in mixing time and purge pulses before relaxation delay d1 for NOESY),
hsqcetgp (2D phase sensitive HSQC using Echo/Antiecho-TPPI gradient selection with decoupling
during acquisition and using trim pulses in inept transfer) for HSQC and hmbcgpndqf (2D H-1/X
HMBC optimized on long range couplings, no decoupling during acquisition using gradient pulses for
selection for HMBC). For each compound characterized in this session the numbering of atoms used for
assignment of 1H- and 13C-NMR signals correspond to IUPAC rules reflected from the given systematic
names. The exact mass measurements were performed using a Q Exactive Focus orbitrap instrument
(Thermo Scientific Bremen, Bremen, Germany) equipped with heated electrospray ionization source.
X-ray diffraction data were collected on an XtaLab Synergy-R diffractometer (Rigaku, Neu-Isenburg,
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Germany) using Cu -Kα radiation (λ = 1.54184 Å). Data reduction was carried out using the software
provided with the diffractometer (CrysAlisPro 1.171.40.14e, Rigaku OD, 2018)). All calculations were
carried out by using the Gaussian 09 software (Gaussian Incorporation, Pittsburgh, U.S.) package [38].
The optimized structures are available from the authors.

3.1. (±)-1-(2-Nitrophenyl)-2,3,4,9-Tetrahydro-1H-Pyrido[3,4-b]indole (3)

Tryptamine (3.20 g, 20 mmol), 2-nitrobenzaldehyde (3,03 g, 20 mmol) and boric acid (1,24g,
20 mmol) were dissolved in acetic acid (20 mL). The resulting solution was stirred at reflux under
argon for 12 h and cooled down to rt. To this cooled reaction mixture stirred intensively, saturated
aqueous Na2CO3 solution (200 mL) was added in small portions. The precipitated solid was separated
by filtration and recrystallized from EtOH to obtain the product as deep yellow powder. Orange solid.
Yield: 4.98 g (85%). M.p. 95–98 ◦C. 1H-NMR (DMSO-d6): 10.61 (s, 1H, (N)H-9); 7.94 (dd, J = 7.7 Hz
and 1.3 Hz 1H, H-3′); 7.54 (td, J = 7.8 Hz and 1.3 Hz, 1H, H-5′); 7.50 (td, J = 7.7 Hz and 1.3 Hz, 1H,
H-4′); 7.43 (br~d, J~8 Hz, 1H, H-5); 7.26 (br~d, J~8 Hz, 1H, H-8); 7.08 (dd, J = 7.7 Hz and 1.3 Hz, 1H,
H-6′); 7.04 (t, J = 7.8 Hz, 1H, H-7); 6.97 (t, J = 7.8 Hz, 1H, H-6); 5.66 (s, 1H, H-1); 2.93 (dt, J = 12.7 Hz
and 5.0 Hz, 1H, H-3b); 2.80 (ddd, J = 12.7 H, 7.6 Hz and 5.0 Hz, 1H, H-3a); 2.73–2.62 (m, 2H, H-4a,4b).
13C-NMR (DMSO-d6): 149.9 (C-2′); 137.5 (C-1′); 136.4 (C-8a); 133.8 (C-9a); 133.0 (C-5′); 131.1 (C-4′);
129.0 (C-6′); 127.2 (C-4b); 124.8 (C-3′); 121.4 (C-7); 118.8 (C-6); 118.3 (C-5); 111.7 (C-8), 109.8 (C-4a); 51.4
(C-1); 40.5 (C-3); 22.5 (C-4). HRMS exact mass calcd. for C17H16N3O2 [MH]+, requires m/z: 294.12370
found m/z: 294.12312.

3.2. Methyl (1R,3S)-1-(2-Nitrophenyl)-2,3,4,9-Tetrahydro-1H-Pyrido[3,4-b]indole-3-Carboxylate (4/T)

To a cooled and stirred solution of L-tryptophan methyl ester hydrochloride (5.09 g, 20 mmol) in
water (50 mL) a solution of KOH (1.12 g, 20 mmol in 10 mL of water) was added in small portions
and the resulting mixture was extracted with CH2Cl2 (4 × 15 mL). The organic phase was dried over
Na2SO4 and evaporated to dryness. The oily residue, 2-nitrobenzaldehyde (3.03 g, 20 mmol) and boric
acid (1.24 g, 20 mmol) were dissolved in acetic acid and (20 mL). The solution was stirred at reflux
under argon for 12 h and cooled down to rt. To the stirred reaction mixture saturated Na2CO3 solution
(200 mL) was added in small portions. The precipitated solid containing ca. 1:2 mixture of 4/C and 4/T
was subjected to flash chromatography on silica using CH2Cl2-MeOH (80:1) as eluent (Rf = 0.20 for 4/T
and 0.23 for 4/C as detected by TLC). (No detectable separation could be observed when more polar
solvents, e.g., CH2Cl2-MeOH (from 50:1 to 10:1) were used as eluent.) The complete separation of the
eluting fractions could not be achieved, so the non-overlapping upper part of the second band was
collected and evaporated to dryness. The oily residue was crystallized with cold MeOH to obtain the
product as a yellow powder. Orange solid. Yield: 2.95 g (42%). M.p. 105–107 ◦C. 1H-NMR (DMSO-d6):
10.66 (s, 1H, (N)H-9); 7.93 (dd, J = 7.7 Hz and 1.3 Hz 1H, H-3′); 7.52 (br~t, J~8 Hz, 1H, H-5′); 7.48 (td,
J = 7.7 Hz and 1.3 Hz, 1H, H-4′); 7.44 (br~d, J~8 Hz, 1H, H-5); 7.22 (br~d, J~8 Hz, 1H, H-8); 7.02 (t,
J = 7.8 Hz, 1H, H-7); 6.97–6.93 (m, 2H, H-6,6′); 5.81 (s, 1H, H-1); 3.63 (ddd, J = 8.4 Hz, 6.8 Hz and 5.0 Hz,
1H, H-3a); 3.57 (s, 3H, 3-CO2CH3); 3.03 (dd, J = 15.0 Hz and 5.0 Hz, 1H, H-4a); 2.82 (ddd, J = 15.0 Hz,
8.4 Hz and 1.2 Hz, 1H, H-4b). 13C-NMR (DMSO-d6): 172.8 (3-CO2CH3);149.9 (C-2′); 136.4 (C-8a); 135.2
(C-9a); 133.3 (C-5′); 131.1 (C-4′); 129.3 (C-6′); 128.0 (C-1′); 127.1 (C-4b); 125.1 (C-3′); 121.6 (C-7); 119.1
(C-6); 118.2 (C-5); 111.7 (C-8), 107.8 (C-4a); 52.2 (3-CO2CH3); 52.1 (C-3); 49.8 (C-1); 25.1 (C-4). HRMS
exact mass calcd. for C19H18N3O4 [MH]+, requires m/z: 352.12918, found m/z: 352.12851.

3.3. Hydrogenation of 1-(2-Nitrophenyl)-2,3,4,9-Tetrahydro-1H-Pyrido[3,4-b]indoles 3 and 4/T

The corresponding 2-nitrophenyl derivative (10 mmol) was dissolved in MeOH (20 mL) In the
presence of 10% Pd/C (1.21 g) the reaction mixture was stirred under H2 (1 atm, balloon) for 6 h.
The catalyst was removed by filtration over celite and the filtrate was concentrated in vacuo. The reulting
solid was triturated with cold MeOH and filtered off to obtain the product as colorless crystals.
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3.3.1. (±)-1-(2-Aminophenyl)-2,3,4,9-Tetrahydro-1H-Pyrido[3,4-b]indole (5)

Colourless solid. Yield: 2.16 g (82%). M.p. 123–126 ◦C.1H-NMR (DMSO-d6): 10.61 (s, 1H, (N)H-9);
7.41 (d, J = 7.8 Hz, 1H, H-5); 7.25 (d, J = 7.8 Hz, 1H, H-8); 7.04–6.98 (m, 2H, H-3,7); 6.96 (t, J = 7.8 Hz,
1H, H-6); 6.68–6.65 (m, 2H, H-1,4); 6.49 (t, J = 7.7 Hz, 1H, H-2′); 5.25 (br s, 2H, 2′-NH2); 5.21 (s, 1H,
H-1); 3.29 (br~s, 1H, (N)H-2); 2.95 (br s, 2H, H-3a3b); 2.69 (br s, 2H, H-4a4b); 13C-NMR (DMSO-d6):
147.8 (C-2′); 136.3 (C-8a); 135.3 (C-9a); 129.9 (C-6′); 128.4 (C-4′); 127.4 (C-4b); 125.9 (C-1′); 120.8 (C-7);
118.6 (C-6); 117.9 (C-5); 116.2 (C-5′); 115.8 (C-3′); 111.5 (C-8), 108.7 (C-4a); 51.7 (C-1); 41.5 (C-3); 22.8
(C-4). HRMS exact mass calcd. for C17H18N3 [MH]+, requires m/z: 264.14952 found m/z: 264.14896.

3.3.2. Methyl (1R,3S)-1-(2-Aminophenyl)-2,3,4,9-Tetrahydro-1H-Pyrido[3,4-b]indole-3-Carboxylate
(6/T)

Colourless solid. Yield: 2.41 g (75%). M.p 110–113 ◦C. 1H-NMR (DMSO-d6): 10.69 (s, 1H, (N)H-9);
7.41 (d, J = 7.8 Hz, 1H, H-5); 7.21 (d, J = 7.8 Hz, 1H, H-8); 7.00 (t, J = 7.8 Hz, 1H, H-7); 6.95 (t, J = 7.5 Hz,
1H, H-4′); 6.93 (t, J = 7.88 Hz, 1H, H-6); 6.65 (d, J = 7.6 Hz, 1H, H-3′); 6.43–6.38 (m, 2H, H-5′,6′); 5.28 (s,
1H, H-1); 5.22 (br s, 2H, 2′-NH2); 3.60 (s, 3H, 3-CO2CH3); 3.57 (br ~s, 1H, H-3); 3.09 (br s, 1H, (N)H-2);
2.98 (dd, J = 15.1 Hz and 5.0 Hz, 1H, H-4a); 2.79 (dd, J = 15.1 Hz and 9.1 Hz, 1H, H-4b). 13C-NMR
(DMSO-d6):174.2 (3-CO2CH3); 147.7 (C-2′); 136.4 (C-8a); 134.5 (C-9a); 129.4 (C-6′); 128.5 (C-4′); 127.1
(C-4b); 125.9 (C-1′); 121.3 (C-7), 118.8 (C-6); 118.0 (C-5); 116.2 (C-5′); 115.9 (C-3′); 111.5 (C-8); 107.6
(C-4a); 52.3 (C-3); 52.1 (3-CO2CH3); 51.7 (C-1); 25.7 (C-4). HRMS exact mass calcd. for C19H20N3O2

[MH]+, requires m/z: 322.15500 found m/z: 322.15441.

3.4. Cyclization Reactions of 1-(2-Aminophenyl)-2,3,4,9-Tetrahydro-1H-Pyrido[3,4-b]indoles 5 and 6/T

The corresponding 2-aminophenyl derivative (2 mmol) and the aldehyde component (1.1 mmol)
were stirred and heated under argon at reflux temperature in a mixture of MeOH (10 mL) and AcOH
(2 mL) for 0.5-16 h and cooled down to rt. (The exact reaction times are given along with the isolated
yields of the products as presented in the sections below describing product characterization.) To this
reaction mixture, cooled with ice-water, saturated aqueous Na2CO3 solution (15 mL) was added
in small portions. (The reaction mixtures obatined by the cyclizations involving 7m as aldehyde
component were diluted with 10 mL of water and carefully neutralized by the addition of solid
NaHCO3 in small portions.) The precipitated solid was separated by filtration, triturated with a cold
2:5 mixture of MeOH and water (ca. 15 mL), filtered off again and dried in dessicator over KOH
pellets. Analytical samples were recrystallized from MeOH. (In order to remove the traces of tarry
contaminations formed in uncontrolled processes, the crude products of the cyclization reactions with
ferrocene reagents 7l and 7m were dissolved in 20 mL of CH2Cl2 and passed through a celite pad.)
The solution was evaporated to obtain an oily or solid residue which was triturated with a cold 1:5
mixture of MeOH and water (ca. 10 mL). The purified product was filtered off and dried in dessicator
over KOH pellets.

3.4.1. (6R*,14bS*)-6-Phenyl-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]quinazoline (8a/T1)

Colourless solid. Yield: 0.260 g (37%) with 0.5 h reaction time; 0.556 g (77%) with 12 h reaction
time. M.p. 153–156 ◦C. 1H-NMR (DMSO-d6): 10.99 (s, 1H, (N)H-14); 7.46 (d, J = 7.4 Hz, 2H, H-2′,6′);
7.34 (t, J = 7.4 Hz, 2H, H-3′,5′); 7.26 (t, J = 7.4 Hz, 1H, H-4′); 7.39 (d, J = 7.8 Hz, 1H, H-10); 7.30 (d,
J = 7.8 Hz, 1H, H-13); 7.03 (t, J = 7.8 Hz, 1H, H-12); 7.00 (d, J = 7.5 Hz, 1H, H-1); 6.98 (t, J = 7.5 Hz, 1H,
H-3); 6.95 (t, J = 7.8 Hz, 1H, H-11); 6.78 (d, J = 3.4 Hz, 1H, H-5); 6.71 (br~d, J~8 Hz, 1H, H-4); 6.45 (t,
J = 7.6 Hz, 1H, H-2); 5.28 (d, J = 3.4 Hz, 1H, H-6); 4.66 (br s, 1H, H-14b); 3.19 (dd, J = 10.9 Hz and 5.9
Hz, 1H, H-8b); 2.97 (td, J = 10.9 Hz and 3.6 Hz, 1H, H-8a); 2.89 (ddd, J = 15.1 Hz, 10.9 Hz and 5.9 Hz,
1H, H-9b); 2.68 (dd, J = 14.1 Hz and 3.6 Hz, 1H, H-9a). 13C-NMR (DMSO-d6): 144.0 (C-1′); 142.0 (C-4a);
136.3 (C-13a); 134.9 (C-14a); 128.7 (C-3′,5′); 128.0 (C-1); 127.9 (C-3); 127.8 (C-4′); 127.5 (C-2′,6′); 127.0
(C-9b); 121.1 (C-12), 119.3 (C-14c); 118.8 (C-11); 118.2 (C-10); 115.9 (C-2); 113.6 (C-4); 111.5 (C-13); 106.5
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(C-9a); 72.6 (C-6); 49.9 (C-14b); 46.6 (C-8); 23.2 (C-9). HRMS exact mass calcd. for C24H22N3 [MH]+,
requires m/z: 352.18082, found m/z: 352.18022.

3.4.2.
(6R*,14bS*)-6-(3-Trifluoromethylphenyl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]
quinazoline (8b/T1)

Colourless solid. Yield: 0.630 g (75%) with 1 h reaction time. 0.604 g (72%) with 12 h reaction
time. M.p. 253–255 ◦C. 1H-NMR (DMSO-d6): 10.96 (s, 1H, (N)H-14); 7.75–7.71 (overlapping m’s, 2H,
H-2′,6′); 7.61 (d, J = 7.6 Hz, 1H, H-4′); 7.56 (t, J = 7.6 Hz, 1H, H-5′); 7.36 (d, J = 7.8 Hz, 1H, H-10); 7.26
(d, J = 7.8 Hz, 1H, H-13); 7.01 (t, J = 7.8 Hz, 1H, H-12); 6.98–6.94 (overlapping m’s, 2H, H-1,3); 6.92 (t,
J = 7.8 Hz, 1H, H-11); 6.86 (d, J = 3.7 Hz, 1H, H-5); 6.70 (d, J = 7.6 Hz, 1H, H-4); 6.43 (td, J = 7.6 Hz
and 1.2 Hz, 1H, H-2); 5.35 (d, J = 3.7 Hz, 1H, H-6); 4.56 (br s, 1H, H-14b); 3.18 (m, 1H, H-8b); 2.96–2.87
(m, 3H H-8a,9a,9b). 13C-NMR (DMSO-d6): 145.6 (C-1′); 141.4 (C-4a); 136.3 (C-13a); 134.6 (C-14a); 131.9
(C-6′); 130.0 (C-5′); 129.5 (qa, J = 30.8 Hz, C-3′); 128.1 (C-1); 128.0 (C-3); 127.1 (qa, J = 272.5 Hz, CF3);
126.9 (C-9b); 124.7 (C-4′); 124.0 (C-2′); 121.2 (C-12), 119.3 (C-14c); 118.9 (C-11); 118.3 (C-10); 116.3 (C-2);
113.8 (C-4); 111.5 (C-13); 106.6 (C-9a); 72.2 (C-6); 49.9 (C-14b); 46.5 (C-8); 22.1 (C-9 HRMS exact mass
calcd. for C25H21F3N3 [MH]+, requires m/z: 420.16766 found m/z: 420.16755.

3.4.3.
(6R*,14bS*)-6-[3,5-Bis(trifluoromethyl)phenyl]-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido-
[1,2-c]quinazoline (8c/T1)

Colourless solid. Yield: 0.770 g (79%) with 1 h reaction time. 0.741 g (76%) with 12 h reaction
time. M.p. 247–250 ◦C. 1H-NMR (DMSO-d6): 10.96 (s, 1H, (N)H-14); 8.04 (br s, 2H, H-2′,6′); 8.02 (br s,
1H, H-4′); 7.36 (d, J = 7.8 Hz, 1H, H-10); 7.28 (d, J = 7.8 Hz, 1H, H-13); 7.02 (br~t, J~8 Hz, 1H, H-12);
6.99–6.95 (overlapping m’s, 3H, H-1,3,5); 6.93 (br~t, J~8 Hz, 1H, H-11); 6.74 (br~d, J~8 Hz, 1H, H-4);
6.46 (td, J = 7.8 Hz and 1.2 Hz, 1H, H-2); 5.48 (d, J = 3.2 Hz, 1H, H-6); 4.54 (br s, 1H, H-14b); 3.21 (m,
1H, H-8b); 2.96–2.87 (m, 3H H-8a,9a,9b). 13C-NMR (DMSO-d6): 147.9 (C-1′); 141.0 (C-4a); 136.3 (C-13a);
134.2 (C-14a); 130.8 (qa, J = 32.6 Hz, C-3′,5′); 128.4 (br, C-2′,6′); 128.3 (C-3); 128.1 (C-1); 126.9 (C-9b); 123.
8 (qa, J = 273.6 Hz, 3′,5′-CF3); 121.9 (br, C-4′); 121.2 (C-12), 119.3 (C-14c); 118.9 (C-11); 118.3 (C-10);
116.7 (C-2); 114.0 (C-4); 111.5 (C-13); 106.6 (C-9a); 71.7 (C-6); 49.8 (C-14b); 46.5 (C-8); 22.0 (C-9). HRMS
exact mass calcd. for C26H20F6N3 [MH]+, requires m/z: 488.15559, found m/z: 488.15512.

3.4.4. (6R*,14bS*)-6-(4-Nitromethylphenyl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]-
quinazoline (8d/T1)

Light orange solid. Yield: 0.587 g (74%) with 1 h reaction time. 0.618 g (78%) with 12 h reaction
time. M.p. 292–295 ◦C. 1H-NMR (DMSO-d6): 10.94 (s, 1H, (N)H-14); 8.19 (d, J = 8.8 Hz, 2H, H-3′,5′);
7.69 (d, J = 8.8 Hz, 2H, H-2′,6′); 7.36 (d, J = 7.8 Hz, 1H, H-10); 7.26 (d, J = 7.8 Hz, 1H, H-13); 7.01 (t,
J = 7.8 Hz, 1H, H-12); 6.98–6.94 (overlapping m’s, 2H, H-1,3); 6.92 (t, J = 7.8 Hz, 1H, H-11); 6.88 (d,
J = 3.9 Hz, 1H, H-5); 6.71 (dd, J = 7.6 Hz and 1.2 Hz, 1H, H-4); 6.43 (td, J = 7.6 Hz and 1.2 Hz, 1H, H-2);
5.38 (d, J = 3.7 Hz, 1H, H-6); 4.54 (br s, 1H, H-14b); 3.20 (dd, J = 10.2 Hz and 4.6 Hz, 1H, H-8b); 2.93
(td, J = 10.2 Hz and 4.0 Hz, 1H, H-8a); 2.97–2.84 (m, 2H H-9a,9b). 13C-NMR (DMSO-d6): 151.7 (C-1′);
147.4 (C-4′); 141.3 (C-4a); 136.5 (C-13a); 134.5 (C-14a); 129.0 (C-2′,6′); 128.1 (C-3); 128.0 (C-1); 127.0
(C-9b); 124.1 (C-3′,5′); 121.2 (C-12), 119.3 (C-14c); 119.0 (C-11); 118.3 (C-10); 116.4 (C-2); 113.9 (C-4);
111.5 (C-13); 106.6 (C-9a); 72.4 (C-6); 60.2 (C-14b); 46.7 (C-8); 22.3 (C-9). HRMS exact mass calcd. for
C24H21N4O2 [MH]+, requires m/z: 397.16600, found m/z: 397.16542.

3.4.5. (6R*,14bS*)-6-(2-Nitrophenyl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]-
quinazoline (8e/T1)

Yellow solid. Yield: 0.634 g (80%) with 1 h reaction time. 0.595 g (75%) with 12 h reaction time.
M.p. 275–279 ◦C. 1H-NMR (DMSO-d6): 10.97 (s, 1H, (N)H-14); 7.75 (br~d, J~8 Hz, 1H, H-3′); 7.62 (t,
J = 7.7 Hz, 1H, H-5′); 7.57 (dd, J = 7.7 Hz and 1.7 Hz, 1H, H-6′); 7.48 (dt, J = 7.7 Hz and 1.7 Hz, 1H,
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H-4′); 7.33 (d, J = 7.8 Hz, 1H, H-10); 7.25 (d, J = 7.8 Hz, 1H, H-13); 7.01 (t, J = 7.8 Hz, 1H, H-12); 6.98 (t,
J = 7.5 Hz, 1H, H-3); 6.94 (d, J = 7.5 Hz, 1H, H-1); 6.91 (t, J = 7.8 Hz,1H, H-11); 6.85 (d, J = 4.1 Hz, 1H,
H-5); 6.73 (d, J = 7.5 Hz, 1H, H-4); 6.43 (t, J = 7.5 Hz, 1H, H-2); 5.84 (d, J = 4.1 Hz, 1H, H-6), 4.31 (br s,
1H, H-14b); 3.21 (m, 1H, H-8b); 2.96–2.87 (m, 3H H-8a,9a,9b). 13C-NMR (DMSO-d6): 149.4 (C-2′); 141.4
(C-4a); 136.9 (C-1′); 136.3 (C-13a); 134.0 (C-14a); 132.5 (C-5′); 129.4 (C-4′); 129.3 (C-6′); 128.2 (C-3); 127.8
(C-1); 126.9 (C-9b); 125.2 (C-3′); 121.2 (C-12); 119.1 (C-14c); 118.9 (C-11); 118.2 (C-10); 116.6 (C-2); 113.9
(C-4); 111.5 (C-13); 106.6 (C-9a); 69.5 (C-6); 49.7 (C-14b); 46.9 (C-8); 21.9 (C-9). HRMS exact mass calcd.
for C24H21N4O2 [MH]+, requires m/z: 397.16600, found m/z: 397.16590.

3.4.6. (6R*,14bR*)-6-(3,4,5-Trimethoxyphenyl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]
quinazoline (8f/C1)

Colourless solid. Yield: 0.556 g (63%) with 0.5 h reaction time. M.p. 235–238 ◦C. 1H-NMR
(DMSO-d6): 11.27 (s, 1H, (N)H-14); 7.35 (d, J = 7.8 Hz, 1H, H-13); 7.31 (d, J = 7.8 Hz, 1H, H-10); 7.20 (d,
J = 7.9 Hz, 1H, H-1); 7.02 (t, J = 7.8 Hz, 1H, H-12); 6.95 (t, J = 7.9 Hz, 1H, H-3); 6.93 (t, J = 7.8 Hz, 1H,
H-11); 6.91 (s, 2H, H-2′,6′); 6.73 (d, J = 7.9 Hz, 1H, H-4); 6.54 (t, J = 7.9 Hz, 1H, H-2); 6.28 (br s, 1H, H-5);
5.60 (two coalesced lines, 2H, H-6,14b); 3.66 (s, 6H, 3′,5′-OCH3); 361 (s, 3H, 4′-OCH3); 2.73 (m, 1H,
H-8b); 2.60–2.47 (overlapping m’s, 3H, H-8a9a,9b). 13C-NMR (DMSO-d6): 153.2 (C-3′,5′); 144.0 (C-4a);
139.4 (C-1′); 137.2 (C-4′); 136.6 (C-13a); 134.9 (C-14a); 127.9 (C-1); 127.5 (C-3); 126.8 (C-9b); 121.4 (C-14c);
121.1 (C-12), 118.8 (C-11); 118.2 (C-10); 117.6 (C-2); 115.6 (C-4); 111.5 (C-13); 107.3 (C-9a); 105.0 (C-2′,6′);
73.2 (C-6); 60.5 (4′-OCH3); 56.4 (3′,5′-OCH3); 57.5 (C-14b); 38.0 (C-8); 21.9 (C-9). HRMS exact mass
calcd. for C27H28N3O3 [MH]+, requires m/z: 442.212520, found m/z: 442.21261.

3.4.7. (6R*,14bS*)-6-(3,4,5-Trimethoxyphenyl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]
quinazoline (8f/T1)

Colourless solid. Yield: present in ca. 80% of the isomer mixture 8f/T1 and 8f/C1 isolated after 8
h reaction time with weight of 0.662 g (75%). 1H-NMR (DMSO-d6): 10.91 (s, 1H, (N)H-14), 7.35 (d,
J = 7.8 Hz, 1H, H-10); 7.27 (d, J = 7.8 Hz, 1H, H-13); 7.03–6.98 (overlapping m’s, 2H, H-1,12); 6.94 (t,
J = 7.9 Hz, 1H, H-3); 6.91 (t, J = 7.8 Hz, 1H, H-11); 6.74 (s, 2H, H-2′,6′); 6.68 (d, J = 3.1 Hz, 1H, H-5); 6.65
(d, J = 7.9 Hz, 1H, H-4); 6.42 (t, J = 7.9 Hz, 1H, H-2); 5.14 (d, J = 3.1 Hz, 1H, H-6), 4.74 (br s, 1H, H-14b);
3.63 (s, 6H, 3′,5′-OCH3); 3.59 (s, 3H, 4′-OCH3); 3.12 (ddd, J = 10.6 Hz, 5.6 Hz and 2.0 Hz, 1H, H-8b);
2.92 (td, J = 10.6 Hz, 3.9 Hz, 1H, H-8a); 2.82 (m, 1H, H-9b); 2.64 (br~d, J~15 Hz, 1H, H-9a). 13C-NMR
(DMSO-d6): 153.3 (C-3′,5′); 141.9 (C-4a); 139.7 (C-1′); 137.3 (C-4′); 136.5 (C-13a); 135.0 (C-14a); 128.1
(C-3); 128.0 (C-1); 127.2 (C-9b); 121.6 (C-12), 119.4 (C-14c); 119.0 (C-11); 118.4 (C-10); 116.0 (C-2); 113.8
(C-4); 111.4 (C-13); 106.5 (C-9a); 72.4 (C-6); 60.7 (4′-OCH3); 56.5 (3′,5′-OCH3); 50.5 (C-14b); 46.7 (C-8);
21.8 (C-9).

3.4.8. (6R*,14bR*)-6-Ferrocenyl-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]quinazoline
(8g/C1)

Yellow solid. Yield: 0.358 g (39%) with 0.5 h reaction time. M.p. 211–215 ◦C (decomp.). 1H-NMR
(DMSO-d6): 11.23 (s, 1H, (N)H-14); 7.33 (d, J = 7.8 Hz, 1H, H-13); 7.27 (d, J = 7.8 Hz, 1H, H-10); 7.15 (d,
J = 7.6 Hz, 1H, H-1); 7.00 (t, J = 7.8 Hz, 1H, H-12); 6.94 (t, J = 7.6 Hz, 1H, H-3); 6.89 (t, J = 7.8 Hz, 1H,
H-1,11); 6.81 (d, J = 7.6 Hz, 1H, H-4); 6.49 (t, J = 7.6 Hz, 1H, H-2); 5.60 (br s, 1H, H-6); 5.53 (br s, 1H, H-5);
5.49 (br s, 1H, H-14b); 4.55 (br s, 1H, H-2′); 4.34 (br s, 1H, H-5′); 4.22 (s, 5H, η5-C5H5); 4.19 (br s, 2H,
H-3′,4′); 2.80 (m, 1H, H-8b); 2.48-2.43 (overlapping m’s, 3H, H-8b,9a,9b). 13C-NMR (DMSO-d6): 143.8
(C-4a); 136.5 (C-13a); 134.9 (C-14a); 127.9 (C-1); 127.4 (C-3); 126.7 (C-9b); 120.9 (C-12); 120.8 (C-14c);
118.6 (C-11); 118.3 (C-10); 115.0 (C-2); 113.5 (C-4); 111.4 (C-13); 107.0 (C-9a); 86.7 (C-1′); 71.0 (C-6); 69.2
(η5-C5H5); 68.4 (C-5′); 67.8 (two coalesced lines, C-3′,4′); 67.0 (C-2′); 57.2 (C-14b); 37.4 (C-8); 21.3 (C-9).
HRMS exact mass calcd. for C28H26FeN3 [MH]+, requires m/z: 460.14706, found m/z: 460.14641.
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3.4.9. (6R*,14bS*)-6-Ferrocenyl-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]quinazoline
(8g/T1)

Yield: present in ca. 70% of the isomer mixture 8g/T1 and 8g/C1 isolated after 8 h reaction time
with weight of 0.477 g (52%). 1H-NMR (DMSO-d6): 11.02 (s, 1H, (N)H-14); 7.31 (d, J = 7.8 Hz, 1H,
H-10); 7.24 (d, J = 7.8 Hz, 1H, H-13); 6.99 (t, J = 7.8 Hz, 1H, H-12); 6.95 (d, J = 7.6 Hz, 1H, H-1); 6.91 (d,
J = 7.6 Hz, 1H, H-3); 6.88 (t, J = 7.8 Hz, 1H, H-1,11); 6.67 (d, J = 7.6 Hz, 1H, H-4); 6.45 (d, J = 3.4 Hz, 1H,
H-5); 6.36 (t, J = 7.6 Hz, 1H, H-2); 5.18 (d, J = 3.4 Hz, 1H, H-6); 4.75 (br s, 1H, H-14b); 4.63 (t, J = 2.2 Hz,
1H, H-2′); 4.08 (t, J = 2.2 Hz, 1H, H-5′); 4.00 (br s, 2H, H-3′,4′); 4.21 (s, 5H, η5-C5H5); 3.01 (m, 1H, H-8b);
2.80–2.77 (overlapping m’s, 2H, H-8b,9a); 2.56 (m, 1H, H-9b). 13C-NMR (DMSO-d6): 142.2 (C-4a); 136.3
(C-13a); 135.0 (C-14a); 127.7 (C-1); 127.5 (C-3); 126.9 (C-9b); 120.9 (C-12); 118.9 (C-14c); 118.6 (C-11);
118.3 (C-10); 115.6 (C-2); 113.3 (C-4); 111.2 (C-13); 106.5 (C-9a); 91.5 (C-1′); 73.5 (C-2′); 70.9 (C-6); 70.1
(C-5′); 69.3 (η5-C5H5); 67.7 (two coalesced lines, C-3′,4′);49.5 (C-14b); 46.2 (C-8); 21.6 (C-9).

3.4.10.
(6R*,14bR*)-6-(Pyridine-2-yl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]quinazoline
(8h/C1)

Light yellow solid. Yield: present in ca. 60% of the isomer mixture 8h/T1 and 8h/C1 isolated after
0.5 reaction time with weight of 0.508 g (72%). 1H-NMR (DMSO-d6): 11.36 (s, 1H, (N)H-14); 8.67 (dd,
J = 4.5 Hz and 1.2 Hz, 1H, H-6′); 7.92 (td, J = 8.2 Hz and 1.2 Hz, 1H, H-4′); 7.73 (d, J = 8.2 Hz, 1H,
H-3′); 7.43 (dd, J = 8.2 Hz and 4.5 Hz, 1H, H-5′); 7.41 (d, J = 7.8 Hz, 1H, H-13); 7.36 (d, J = 7.8 Hz, 1H,
H-10); 7.25 (d, J = 7.6 Hz, 1H, H-1); 7.08 (t, J = 7.8 Hz, 1H, H-12); 7.03-6.94 (m, 2H, H-3,11); 6.86 (d,
J = 7.8 Hz, 1H, H-4); 6.57 (t, J = 7.5 Hz, 1H, H-2); 6.38 (br s, 1H, H-5); 5.77 (br s, 1H, H-6), 5.71(br s, 1H,
H-14b); 2.63 (br ~d, J~10 Hz, 1H, H-8b); 2.56–2.51 (m, 3H, H-8a,9a,9b). 13C-NMR (DMSO-d6): 157.1
(C-2′); 146.9 (C-6′); 143.3 (C-4a); 137.5 (C-4′); 136.3 (C-13a); 135.2 (C-14a); 127.9 (C-1); 127.7 (C-3); 126.9
(C-9b); 123.6 (C-5′); 122.4 (C-3′); 121.2 (C-12), 120.9 (C-14c); 118.8 (C-11); 118.2 (C-10); 117.3 (C-2); 113.6
(C-4); 111.6 (C-13); 107.0 (C-9a); 73.1 (C-6); 57.7 (C-14b); 38.7 (C-8); 21.9 (C-9). HRMS exact mass calcd.
for C23H21N4 [MH]+, requires m/z: 353.17571, found m/z: 353.17607.

3.4.11.
(6R*,14bS*)-6-(Pyridine-2-yl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]-Quinazoline
(8h/T1)

Yield: present in ca. 40% of the isomer mixture 8h/T1 and 8h/C1 isolated after 0.5 reaction time
with weight of 0.508 g (72%). 1H-NMR (DMSO-d6): 11.00 (s, 1H, (N)H-14); 8.54 (dd, J = 4.6 Hz and
1.2 Hz, 1H, H-6′); 7.79 (dd, J = 8.3 Hz and 1.2 Hz, 1H, H-4′); 7.49 (d, J = 8.2 Hz, 1H, H-4′); 7.36 (d,
J = 7.8 Hz, 1H, H-10); 7.32 (d, J = 7.8 Hz, 1H, H-13); 7.29 (dd, J = 8.3 Hz and 4.6 Hz, 1H, H-5′); 7.05 (dd,
J = 7.6 Hz and 1.2 Hz, 1H, H-1); 7.03 (t, J = 7.8 Hz, 1H, H-12); 7.01-6.92 (m, 2H, H-3,11); 6.71 (d, J = 3.6
Hz, 1H, H-5); 6.68 (d, J = 7.9 Hz, 1H, H-4); 6.47 (t, J = 7.5 Hz, 1H, H-2); 5.28 (d, J = 3.6 Hz, 1H, H-6), 4.79
(br s, 1H, H-14b); 3.20 (m, 1H, H-8b); 2.99 (td, J = 12.4 Hz and 4.0 Hz, 1H, H-8a); 2.63 (m, 1H, H-9b); 2.70
(dd, J = 15.5 Hz and 4.0 Hz, 1H, H-9a). 13C-NMR (DMSO-d6): 162.0 (C-2′); 147.2 (C-6′); 142.2 (C-4a);
137.1 (C-4′); 135.8 (C-13a); 135.2 (C-14a); 128.0 (C-3); 127.8 (C-1); 126.9 (C-9b); 123.2 (C-5′); 122.0 (C-3′);
121.2 (C-12), 119.3 (C-14c); 118.8 (C-11); 118.3 (C-10); 115.9 (C-2); 113.7 (C-4); 111.6 (C-13); 106.9 (C-9a);
74.3 (C-6); 50.3 (C-14b); 47.2 (C-8); 22.0 (C-9).

3.4.12.
(6R*,14bR*)-6-(3-Fluoropyridine-2-yl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]quinazoline
(8i/C1)

Colourless solid. Yield: present in ca. 50% of the isomer mixture 8i/T1 and 8i/C1 isolated after
0.5 reaction time with weight of 0.593 g (80%). 1H-NMR (DMSO-d6): 11.37 (s, 1H, (N)H-14); 8.56
(br~d, J~5 Hz, 1H, H-6′); 7.83 (dd, J = 10.2 Hz and 8.2 Hz, 1H, H-4′); 7.60 (m, 1H, H-5′); 7.40 (d,
J = 7.8 Hz, 1H, H-13); 7.36 (d, J = 7.8 Hz, 1H, H-10); 7.24 (d, J = 7.6 Hz, 1H, H-1); 7.04–6.94 (m, 4H,
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H-1,3,11,12); 6.85 (d, J = 7.9 Hz, 1H, H-4); 6.59 (t, J = 7.6 Hz, 1H, H-2); 6.21 (d, J = 3.4 Hz, 1H, H-5); 6.00
(d, J = 3.4 Hz, 1H, H-6), 5.23 (br s, 1H, H-14b); ~2.5 (overlapped by the CD2H solvent signal, H-8b,9a,9b);
3.01 (td, J = 11.8 Hz and 4.2 Hz, 1H, H-8a); 2.84 (ddd, J = 15.5 Hz 11.8 Hz and 6.3 Hz, 1H, H-9b); 2.66
(dd, J = 15.5 Hz and 4.2 Hz, 1H, H-9a). 13C-NMR (DMSO-d6): 153.5 (d, J = 258.2 Hz, C-3′); 151.2 (d,
J = 11.6 Hz, C-2′); 144.2 (d, J = 5.0 Hz, C-6′); 142.9 (C-4a); 136.5 (C-13a); 134.7 (C-14a); 128.1 and 128.0
(C-1 and C-3); 126.8 (C-9b); 126.1 (d, J = 4.5 Hz, C-5′); 124.8 (d, J = 20.8 Hz, C-5′); 121.3 (C-12); 120.5
(C-14c); 118.8 (C-11); 118.2 (C-10); 117.8 (C-2); 116.1 (C-4); 111.5 (C-13); 106.8 (C-9a); 69.0 (C-6); 57.5
(C-14b); 38.3 (C-8); 21.7 (C-9). HRMS exact mass calcd. for C23H20FN4 [MH]+, requires m/z: 371.16665,
found m/z: 371.16614.

3.4.13.
(6R*,14bS*)-6-(3-Fluoropyridine-2-yl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]-quinazoline
(8i/T1)

Yield: present in ca. 50% of the isomer mixture 8i/T1 and 8i/C1 isolated after 0.5 reaction time
with weight of 0.593 g (80%). 1H-NMR (DMSO-d6): 11.13 (s, 1H, (N)H-14); 8.36 (dd, J = 4.6 Hz and
1.2 Hz, 1H, H-6′); 7.69 (dd, J = 10.2 Hz and 8.2 Hz, 1H, H-4′); 7.42 (m, 1H, H-5′); 7.37 (d, J = 7.8 Hz, 1H,
H-10); 7.30 (d, J = 7.8 Hz, 1H, H-13); 7.04 (t, J = 7.8 Hz, 1H, H-12); 7.00–6.93 (m, 3H, H-1,3,11); 6.59 (d,
J = 7.9 Hz, 1H, H-4); 6.51 (d, J=3.0 Hz, 1H, H-5); 6.45 (t, J = 7.5 Hz, 1H, H-2); 5.61 (d, J = 3.0 Hz, 1H,
H-6), 4.97 (br s, 1H, H-14b); 3.20 (dd, J = 11.8 Hz and 6.3 Hz 1H, H-8b); 3.01 (td, J=11.8 Hz and 4.2
Hz, 1H, H-8a); 2.84 (ddd, J = 15.5 Hz 11.8 Hz and 6.3 Hz, 1H, H-9b); 2.66 (dd, J = 15.5 Hz and 4.2 Hz,
1H, H-9a). 13C-NMR (DMSO-d6): 156.7 (d, J = 258.6 Hz, C-3′); 149.5 (d, J = 11.6 Hz, C-2′); 144.8 (d,
J = 5.0 Hz, C-6′); 142.6 (C-4a); 136.3 (C-13a); 134.6 (C-14a); 127.70 and 127.67 (C-1 and C-3); 126.9 (C-9b);
125.2 (d, J = 4.0 Hz, C-5′); 124.2 (d, J = 19.1 Hz, C-5′); 121.0 (C-12); 119.3 (C-14c); 118.8 (C-11); 118.2
(C-10); 115.5 (C-2); 113.4 (C-4); 111.4 (C-13); 106.5 (C-9a); 69.1 (C-6); 50.0 (C-14b); 47.7 (C-8); 22.3 (C-9).

3.4.14.
(6R*,14bS*)-6-(3-Bromopyridine-2-yl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]quinazoline
(8j/T1)

Light yellow solid. Yield: 0.736 g (80%) with 1 h reaction time. 0.800 g (87%) with 12 h reaction
time. M.p. 219–223 ◦C. 1H-NMR (DMSO-d6): 11.07 (s, 1H, (N)H-14); 8.45 (dd, J = 4.6 Hz and 1.2 Hz,
1H, H-6′); 8.00 (dd, J = 8.3 Hz and 1.2 Hz, 1H, H-4′); 7.34 (d, J = 7.8 Hz, 1H, H-10); 7.26 (d, J = 7.8 Hz,
1H, H-13); 7.22 (dd, J = 8.3 Hz and 4.6 Hz, 1H, H-5′); 7.00 (t, J = 7.8 Hz, 1H, H-12); 6.95–6.89 (m, 3H,
H-1,3,11); 6.54 (d, J = 7.9 Hz, 1H, H-4); 6.48 (d, J = 3.2 Hz, 1H, H-5); 6.39 (t, J = 7.5 Hz, 1H, H-2); 5.54 (d,
J = 3.2 Hz, 1H, H-6), 4.76 (br s, 1H, H-14b); 3.13 (m, 1H, H-8b); 2.92 (td, J = 12.2 Hz and 4.0 Hz, 1H,
H-8a); 2.84 (ddd, J = 15.5 Hz 12.2 Hz and 6.4 Hz, 1H, H-9b); 2.62 (dd, J = 15.5 Hz and 4.0 Hz, 1H, H-9a).
13C-NMR (DMSO-d6): 158.5 (C-2′); 147.6 (C-6′); 142.7 (C-4a); 141.7 (C-4′); 136.3 (C-13a); 134.5 (C-14a);
127.8 (C-3); 127.6 (C-1); 126.9 (C-9b); 124.9 (C-5′); 121.1 (C-12), 120.5 (C-3′); 119.2 (C-14c); 118.9 (C-11);
118.2 (C-10); 115.2 (C-2); 113.3 (C-4); 111.4 (C-13); 106.7 (C-9a); 73.0 (C-6); 49.6 (C-14b); 47.8 (C-8); 22.4
(C-9). HRMS exact mass calcd. for C23H20BrN4 [MH]+, requires m/z: 431.08658, found m/z: 431.08596.

3.4.15.
(6R*,14bS*)-6-[3,5-Difluorophenyl]-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]quinazoline
(8k/T1)

Colourless solid. Yield: 0.535 g (69%) with 1 h reaction time. 0.550 g (71%) with 12 h reaction
time. M.p. 208–211 ◦C. 1H-NMR (DMSO-d6): 11.03 (s, 1H, (N)H-14); 7.34–7.30 (overlapping m’s, 2H,
H-6′,10); 7.27 (d, J = 7.8 Hz, 1H, H-13); 7.17 (ddd, J = 11.1 Hz, 10.6 Hz and 2.3 Hz, 1H, H-3′); 7.04 (td,
J = 8.2 Hz, 2.3 Hz, 1H, H-5′); 7.01-6.96 (overlapping m’s, 2H, H-1,12); 6.91 (t, J = 7.8 Hz, 1H, H-11); 6.65
(br~d, J~4 Hz, 1H, H-5); 6.63 (d, J = 7.7 Hz, 1H, H-4); 6.48 (t, J = 7.7 Hz, 1H, H-2); 5.45 (br~d, J~4 Hz,
1H, H-6); 4.68 (br s, 1H, H-14b); 3.12 (dd, J = 11.4 Hz,5.6 Hz, 1H, H-8b); 2.89 (dd, J = 11.4 Hz, 3.9 Hz,
1H, H-8a); 2.77 (m, 1H, H-9b); 2.60 (dd, J = 15.4 Hz and 3.9 Hz, 1H, H-9a). 13C-NMR (DMSO-d6): 162.3
(dd, J = 243.3 Hz, 14.3 Hz, C-4′); 159.9 (dd, J = 250.4 Hz, 12.2 Hz, C-2′); 141.9 (C-4a); 136.3 (C-13a);
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134.5 (C-14a); 130.0 (dd, J = 9.8 Hz, 5.6 Hz, C-6′); 128.2 (C-3); 128.0 (C-1); 127.3 (dd, J = 12.4 Hz, 3.3 Hz,
C-1′); 126.9 (C-9b); 121.2 (C-12); 118.9 (two coalesced lines, C-11,14c); 118.2 (C-10); 116.3 (C-2); 113.5
(C-4); 111.5 (C-13); 111.1 (dd, J = 20.8 Hz, 3.0 Hz, C-5′); 106.5 (C-9a); 104.7 (t, J = 26.6 Hz, C-3′); 67.8
(C-6); 50.0 (C-14b); 47.1 (C-8); 22.2 (C-9). HRMS exact mass calcd. for C24H20F2N3 [MH]+, requires m/z:
388.16198, found m/z: 388.16146.

3.4.16.
2-(6S,14bS,Sp)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]quinazolin-6-yl)-ferrocene-1-
carboxylic acid (8m*/C1)

Light orange solid. Yield: 0.473 g (47%) with 5 h reaction time. 0.080 g (8%) with 12 h reaction
time. M.p. 215–218 ◦C. 1H-NMR (DMSO-d6): 11.44 (s, 1H, (N)H-14); 7.38 (d, J = 7.8 Hz, 1H, H-13); 7.31
(d, J = 7.8 Hz, 1H, H-10); 7.24 (d, J = 7.5 Hz, 1H, H-1); 7.06 (t, J = 7.8 Hz, 1H, H-12); 7.03 (t, J = 7.5 Hz,
1H, H-3); 6.94–6.92 (overlapping m’s, 2H, H-4,11); 6.62 (t, J = 7.5 Hz, 1H, H-2); 6.25 (br s, 1H, H-5); 6.23
(br s, 1H, H-6); 5.78 (br s, 1H, H-14b); 4.89 (br s, 1H, H-5′); 4.83 (br s, 1H, H-3′); 4.48 (~t, J~2 Hz, 1H,
H-4′ 4.27 (s, 5H, η5-C5H5); 2.72 (m, 1H, H-8b); 2.60–2.51 (overlapping m’s 3H, H-8a,9a,9b); 13C-NMR
(DMSO-d6): 171.8 (2′-CO2H); 142.6 (C-4a); 136.8 (C-13a); 132.8 (C-14a); 128.0 (two coalesced lines,
C-1,3); 126.5 (C-9b); 121.6 (C-12), 119.8 (C-14c); 119.1 (C-11); 118.4 (C-10); 118.2 (C-2); 115.9 (C-4); 111.7
(C-13); 106.6 (C-9a); 83.4 (C-1′); 74.2 (C-3′); 73.6 (C-2′); 71.4 (η5-C5H5); 70.5 (C-5′); 70.3 (C-6); 69.3 (C-4′);
55.9 (C-14b); 20.6 (C-9).

3.4.17.
Methyl-(6S,8S,14bR)-6-Phenyl-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]-Quinazoline-8-
Carboxylate (9a/T1)

Colourless solid. Yield: 0.525 g (64%) with 2 h reaction time. M.p. 180–183 ◦C. 1H-NMR
(DMSO-d6): 10.98 (s, 1H, (N)H-14); 7.43 (d, J = 7.4 Hz, 2H, H-2′,6′); 7.32 (t, J = 7.4 Hz, 2H, H-3′,5′); 7.24
(t, J = 7.4 Hz, 1H, H-4′); 7.36 (d, J = 7.8 Hz, 1H, H-10); 7.27 (d, J = 7.8 Hz, 1H, H-13); 7.03 (t, J = 7.8 Hz,
1H, H-12); 7.01 (d, J = 7.5 Hz, 1H, H-1); 6.97 (t, J = 7.5 Hz, 1H, H-3); 6.93 (t, J = 7.8 Hz, 1H, H-11); 6.72
(d, J = 3.6 Hz, 1H, H-5); 6.68 (br~d, J~8 Hz, 1H, H-4); 6.43 (t, J = 7.6 Hz, 1H, H-2); 5.27 (d, J = 3.6 Hz,
1H, H-6); 4.81 (br s, 1H, H-14b); 3.73 (s, 3H, 8-CO2CH3); 2.98 (br~d, J~8 Hz 2H, H-9a,9b). 13C-NMR
(DMSO-d6): 173.8 (8-CO2CH3); 143.4 (C-1′); 141.9 (C-4a); 136.3 (C-13a); 134.6 (C-14a); 128.9 (C-3′,5′);
128.3 (C-3); 128.1 (C-4′); 127.9 (C-1); 127.4 (C-2′,6′); 126.6 (C-9b); 121.4 (C-12), 119.1 (C-11); 118.9 (C-14c);
118.3 (C-10); 116.3 (C-2); 113.6 (C-4); 111.5 (C-13); 104.1 (C-9a); 69.0 (C-6); 57.4 (C-8); 52.6 (8-CO2CH3);
49.9 (C-14b); 26.0 (C-9). HRMS exact mass calcd. for C26H24N3O2 [MH]+, requires m/z: 410.18630,
found m/z: 410.18595.

3.4.18.
Methyl-(6S,8S,14bR)-6-(3-Trifluoromethylphenyl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]-Pyrido
[1,2-c]quinazoline-8-Carboxylate (9b/T1)

Colourless solid. Yield: 0.669 g (70%) with 2 h reaction time. M. p. 231–234 ◦C. 1H-NMR
(DMSO-d6): 10.97 (s, 1H, (N)H-14); 7.75 (d, J = 7.6 Hz, 1H, H-6′); 7.71 (br s, 1H, H-2′); 7.63 (d, J = 7.6 Hz,
1H, H-4′); 7.63 (d, J = 7.6 Hz, 1H, H-4′); 7.59 (t, J = 7.6 Hz, 1H, H-5′); 7.37 (d, J = 7.8 Hz, 1H, H-10); 7.28
(d, J = 7.8 Hz, 1H, H-13); 7.03 (t, J = 7.8 Hz, 1H, H-12); 7.00 (dd, J = 8.0 Hz and 7.6 Hz, 1H, H-3); 6.94 (t,
J = 7.8 Hz, 1H, H-11); 6.90 (d, J = 7.6 Hz, 1H, H-1); 6.79 (d, J = 3.7 Hz, 1H, H-5); 6.73 (dd, J = 8.0 Hz
and 1.2 Hz, 1H, H-4); 6.46 (td, J = 7.6 Hz and 1.2 Hz, 1H, H-2); 5.38 (d, J = 3.7 Hz, 1H, H-6); 4.75 (br
s, 1H, H-14b); 3.76 (s, 3H, 8-CO2CH3); 3.73 (dd, J = 11.2 Hz and 7.6 Hz, 1H, H-8); 2.97 (~d, J~8 Hz,
2H H-9a,9b). 13C-NMR (DMSO-d6): 173.9 (8-CO2CH3); 145.1 (C-1′); 141.3 (C-4a); 136.3 (C-13a); 133.5
(C-14a); 131.7 (C-6′); 130.2 (C-5′); 129.7 (qa, J = 31.0 Hz, C-3′); 128.4 (C-3); 127.9 (C-1); 126.7 (C-9b);
124.9 (qa, J = 3.5 Hz, C-4′); 124.7 (qa, J = 273.0 Hz, CF3); 123.8 (qa, J = 3.8 Hz, C-2′); 121.6 (C-12), 119.2
(C-11); 119.0 (C-14c); 118.3 (C-10); 116.8 (C-2); 113.8 (C-4); 111.6 (C-13); 104.2 (C-9a); 68.6 (C-6); 57.3
(C-8); 52.6 (8-CO2CH3); 49.8 (C-14b); 26.3 (C-9). HRMS exact mass calcd. for C27H23F3N3O2 [MH]+,
requires m/z: 478.17369, found m/z: 478.17327.
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3.4.19.
Methyl-(6S,8S,14bR)-6-[3,5-Bis(trifluoromethyl)phenyl]-5,6,8,9,14,14b-Hexahydroindolo-[2′,3′:3,4]
pyrido[1,2-c] quinazoline-8-Carboxylate (9c/T1)

Colourless solid. Yield: 0.677 g (62%) with 2 h reaction time. M.p. 281–284 ◦C. 1H-NMR
(DMSO-d6): 10.98 (s, 1H, (N)H-14); 8.05 (br s, 2H, H-2′,6′); 8.02 (br s, 1H, H-4′); 7.37 (d, J = 7.8 Hz, 1H,
H-10); 7.29 (d, J = 7.8 Hz, 1H, H-13); 7.02 (br~t, J~8 Hz, 1H, H-12); 7.01–6.97 (overlapping m’s, 3H,
H-1,3,5); 6.93 (t, J = 7.8 Hz, 1H, H-11); 6.77 (br~d, J~8 Hz, 1H, H-4); 6.46 (td, J = 7.8 Hz and 1.2 Hz, 1H,
H-2); 5.50 (d, J = 3.3 Hz, 1H, H-6); 4.75 (br s, 1H, H-14b); 3.78 (s, 3H, 8-CO2CH3); 3.76 (dd, J = 10.9 Hz
and 7.5 Hz, 1H, H-8); 2.97 (~d, J~8 Hz, 2H H-9a,9b). 13C-NMR (DMSO-d6): 173.9 (8-CO2CH3); 147.5
(C-1′); 141.0 (C-4a); 136.3 (C-13a); 134.1 (C-14a); 130.7 (qa, J = 32.6 Hz, C-3′,5′); 128.2 (br, C-2′,6′); 128.3
(C-3); 128.1 (C-1); 126.8 (C-9b); 123. 7 (qa, J = 273.8 Hz, 3′,5′-CF3); 121.9 (br, C-4′); 121.4 (C-12), 119.2
(C-14c); 119.0 (C-11); 118.3 (C-10); 116.8 (C-2); 113.8 (C-4); 111.6 (C-13); 104.3 (C-9a); 68.5 (C-6); 57.1
(C-8); 52.6 (8-CO2CH3); 49.7 (C-14b); 26.3 (C-9). HRMS exact mass calcd. for C28H22F6N3O2 [MH]+,
requires m/z: 546.16107, found m/z: 546.16123.

3.4.20.
Methyl-(6S,8S,14bR)-6-(4-Nitrophenyl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]-
Quinazoline-8-Carboxylate (9d/T1)

Light oange solid. Yield: 0.709 g (73%) with 2 h reaction time. M.p. 235–237 ◦C. 1H-NMR
(DMSO-d6): 11.00 (s, 1H, (N)H-14); 8.22 (d, J = 8.7 Hz, 2H, H-3′,5′); 7.69 (d, J = 8.7 Hz, 2H, H-2′,6′); 7.36
(d, J = 7.8 Hz, 1H, H-10); 7.27 (d, J = 7.8 Hz, 1H, H-13); 7.02 (t, J = 7.8 Hz, 1H, H-12); 6.99 (t, J = 7.5
Hz, 1H, H-3); 6.93 (t, J = 7.8 Hz,1H, H-11); 6.88 (d, J = 7.5 Hz, 1H, H-1); 6.87 (d, J= 3.9 Hz, 1H, H-5);
6.73 (d, J = 7.5 Hz, 1H, H-4); 6.45 (t, J = 7.5 Hz, 1H, H-2); 5.42 (d, J = 3.9 Hz, 1H, H-6), 4.71 (br s, 1H,
H-14b); 3.76 (s, 3H, 8-CO2CH3); 3.71 (dd, J = 9.3 Hz, 6.1 Hz, 1H, H-8a); 2.94 (dd, J = 14.9 Hz 9.3 Hz, 1H,
H-9b); 2.88 (dd, J = 14.9 Hz 6.1 Hz, 1H, H-9a). 13C-NMR (DMSO-d6): 173.8 (8-CO2CH3); 151.3 (C-1′);
147.5 (C-4′); 141.1 (C-4a); 136.3 (C-13a); 133.3 (C-14a); 128.8 (C-2′,6′); 128.4 (C-3); 127.8 (C-1); 126.5
(C-9b); 124.3 (C-3′,5′); 121.5 (C-12), 119.2 (C-11); 118.9 (C-14c); 118.3 (C-10); 116.8 (C-2); 113.9 (C-4);
111.6 (C-13); 104.2 (C-9a); 68.6 (C-6); 57.3 (C-8); 52.7 (8-CO2CH3); 50.0 (C-14b); 26.5 (C-9). HRMS exact
mass calcd. for C26H23N4O4 [MH]+, requires m/z: 455.17138, found m/z: 455.17071.

3.4.21.
Methyl-(6S,8S,14bR)-6-(3,4,5-Trimethoxyphenyl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]-pyrido
[1,2-c]quinazoline-8-Carboxylate (9f/T1)

Colourless solid. Yield: 0.709 g (71%) with 2 h reaction time. M.p. 240–243 ◦C. 1H-NMR
(DMSO-d6): 10.86 (s, 1H, (N)H-14); 7.36 (d, J = 7.8 Hz, 1H, H-10); 7.29 (d, J = 7.8 Hz, 1H, H-13); 7.02
(t, J = 7.8 Hz, 1H, H-12); 6.00-6.95 (overlapping m’s, H-1,3); 6.93 (t, J = 7.8 Hz, 1H, H-11); 6.76 (s,
2H, H-2′,6′); 6.67 (d, J = 7.6 Hz, 1H, H-4); 6.63 (d, J = 3.0 Hz, H-5); 6.48 (t, J=7.7 Hz, 1H, H-2); 5.14
(d, J = 3.0 Hz, 1H, H-6), 4.95 (br s, 1H, H-14b); 3.71 (dd, J = 8.4 Hz, 5.3 Hz, 1H, H-8a); 3.70 (s, 3H,
8-CO2CH3); 3.65 (s, 6H, 3′,5′-OCH3); 3.61 (s, 3H, 4′-OCH3); 2.95 (dd, J = 15.4 Hz 8.4 Hz, 1H, H-9b);
2.92 (dd, J = 15.4 Hz 5.3 Hz, 1H, H-9a). 13C-NMR (DMSO-d6): 173.8 (8-CO2CH3); 153.5 (C-3′,5′); 137.7
(C-4′); 142.0 (C-4a); 137.7 (C-4′); 136.3 (C-13a); 133.9 (C-14a); 128.2 (C-3); 128.0 (C-1); 126.7 (C-9b); 121.4
(C-12), 119.0 (C-11); 118.8 (C-14c); 118.3 (C-10); 116.5 (C-2); 113.7 (C-4); 111.7 (C-13); 105.1 (C-2′,6′);
104.8 (C-1′); 104.1 (C-9a); 69.1 (C-6); 60.5 (4′-OCH3); 56.9 (C-8); 56.5 (3′,5′-OCH3); 52.7 (8-CO2CH3);
50.3 (C-14b); 24.8 (C-9). HRMS exact mass calcd. for C29H30N3O5 [MH]+, requires m/z: 500.21800
found m/z: 500.21791.

3.4.22. Methyl-(6S,8S,14bR)-6-Ferrocenyl-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]-
Quinazoline-8-Carboxylate (9g/T1)

Light orange solid. Yield: 0.538 g (52%) with 2 h reaction time. M.p. 201–205 ◦C. 1H-NMR
(DMSO-d6): 11.12 (s, 1H, (N)H-14); 7.33 (d, J = 7.8 Hz, 1H, H-10); 7.26 (d, J = 7.8 Hz, 1H, H-13); 7.00 (t,
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J = 7.8 Hz, 1H, H-12); 6.95 (t, J = 7.5 Hz, 1H, H-3); 6.90 (br~t, J~8 Hz, 1H, H-11); 6.87 (d, J = 7.5 Hz, 1H,
H-1); 6.78 (d, J = 7.9 Hz, 1H, H-4); 6.58 (d, J = 3.7 Hz, 1H, H-5); 6.39 (t, J = 7.5 Hz, 1H, H-2); 5.30 (d,
J = 3.7 Hz, 1H, H-6), 4.98 (br s, 1H, H-14b); 4.22 (dt, J = 2.3 Hz, 1.5 Hz, 1H, H-2′); 4.18 (s, 5H, η5-C5H5);
4.11 (qa, J = 2.3 Hz, 1H, H-5′); 4.03 (~t, J~2 Hz, 2H, H-3′,4′); 3.77 (s, 3H, 8-CO2CH3); 3.59 (dd, J = 10.3
Hz, 5.3 Hz, 1H, H-8a); 2.88 (dd, J = 14.9 Hz 5.3 Hz, 1H, H-9a); 2.83 (dd, J = 14.9 Hz 10.3 Hz, 1H, H-9b).
13C-NMR (DMSO-d6): 174.7 (8-CO2CH3); 142.2 (C-4a); 136.3 (C-13a); 134.3 (C-14a); 128.1 (C-3); 127.7
(C-1); 126.5 (C-9b); 121.4 (C-12), 118.9 (C-11); 118.5 (C-14c); 118.3 (C-10); 116.0 (C-2); 113.4 (C-4); 111.5
(C-13); 104.3 (C-9a); 91.2 (C-1′); 69.3 (η5-C5H5); 68.9 (C-5′); 68.1 and 68.2 (C-3′,4′); 67.1 (C-6); 66.9 (C-2′);
57.2 (C-8); 52.5 (8-CO2CH3); 49.6 (C-14b); 26.8 (C-9). HRMS exact mass calcd. for C30H28FeN3O2

[MH]+, requires m/z: 518.15254, found m/z: 518.15078.

3.4.23. Methyl-(6S,8S,14bR)-6-(pyridine-2-yl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]-
Quinazoline-8-Carboxylate (9h/T1)

Yellow solid. Yield: 0.460 g (56%) with 2 h reaction time. M.p. 190–193 ◦C. 1H-NMR (DMSO-d6):
10.91 (s, 1H, (N)H-14); 8.50 (br ~d, J~4 Hz, 1H, H-6′); 7.79 (td, J = 7.7 Hz, 1.3 Hz, 1H, H-4′); 7.50
(d, J = 7.8 Hz, 1H, H-3′) 7.36 (d, J = 7.8 Hz, 1H, H-10); 7.30-7.27 (overlapping m’s, H-5′,13); 7.02 (t,
J = 7.8 Hz, 1H, H-12); 6.99-6.95 (overlapping m’s, H-1,3); 6.93 (t, J = 7.8 Hz, 1H, H-11); 6.63 and 6.62
(partly overlapping d’s, J = 7.6 Hz and 3.0 Hz, resp., 2 × 1H, H-4 and H-5); 6.47 (t, J = 7.6 Hz, 1H, H-2);
5.24 (d, J = 3.0 Hz, 1H, H-6), 4.94 (br s, 1H, H-14b); 3.69 (s, 3H, 8-CO2CH3); 3.68 (dd, J = 8.8 Hz, 5.6 Hz,
1H, H-8a); 2.98 (dd, J = 15.8 Hz 5.6 Hz, 1H, H-9b); 2.91 (dd, J = 15.8 Hz 8.8 Hz, 1H, H-9a). 13C-NMR
(DMSO-d6): 173.6 (8-CO2CH3); 161.3 (C-2′); 149.2 (C-6′); 142.4 (C-4a); 137.5 (C-4′); 136.3 (C-13a); 133.6
(C-14a); 128.2 (C-3); 127.8 (C-1); 126.6 (C-9b); 123.5 (C-5′); 122.5 (C-3′); 121.4 (C-12), 119.1 (C-11); 119.0
(C-14c); 118.3 (C-10); 116.3 (C-2); 113.9 (C-4); 111.6 (C-13); 104.1 (C-9a); 70.8 (C-6); 57.6 (C-8); 52.5
(8-CO2CH3); 50.6 (C-14b); 25.3 (C-9). HRMS exact mass calcd. for C25H23N4O2 [MH]+, requires m/z:
411.18155, found m/z: 411.18091.

3.4.24.
2-((6S,8S,14bR,Sp)-8-(methoxycarbonyl)-5,6,8,9,14,14b-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]
quinazolin-6-yl)-Ferrocene-1-Carboxylic acid (9m/T1).

Since upon attempted chromatographic purifications this compound underwent uncontrolled
decomposition, this product was identified as the major component (ca. 60% by 1H-NMR) in the
isolated sample (0.250 g) contaminated with undefined components. Due to the presence of these
unidentified components with uncertain composition, 10–15% can be given as an approximate yield
of this unstable product. 1H-NMR (DMSO-d6): 11.19 (s, 1H, (N)H-14); 7.36 (d, J = 7.8 Hz, 1H, H-10);
7.28 (d, J = 7.8 Hz, 1H, H-13); 7.04 (t, J = 7.8 Hz, 1H, H-12); 7.01 (d, J = 7.5 Hz, 1H, H-3); 6.96-6.94
(overlapping m’s, 2H, H-1,11); 6.75 (d, J = 7.5 Hz, 1H, H-4); 6.48 (t, J = 7.5 Hz, 1H, H-2); 6.35 (br s, 1H,
H-5); 5.93 (d, J = 3.2 Hz, 1H, H-6); 5.08 (br s, 1H, H-14b); 4.73 (br s, 1H, H-3′); 4.34 (~t, J~2 Hz, 1H,
H-4′); 4.31 (br s, 1H, H-5′); 4.24 (s, 5H, η5-C5H5); 3.80 (s, 3H, 8-CO2CH3); 3.70 (dd, J = 8.2 Hz, 5.1 Hz,
1H, H-8a); 2.94-2.89 (overlapping m’s 2H, H-9a,9b); 13C-NMR (DMSO-d6): 172.5 (8-CO2CH3); 172.1
(2′-CO2H); 141.2 (C-4a); 136.5 (C-13a); 132.5 (C-14a); 128.6 (C-3); 127.9 (C-1); 126.3 (C-9b); 121.6 (C-12);
119.3 (C-11); 118.4 (C-10); 117.7 (C-14c); 116.7 (C-2); 113.9 (C-4); 111.5 (C-13); 104.3 (C-9a); 73.7 (C-3′);
73.2 (C-1′); 72.5 (C-2′); 71.3 (η5-C5H5); 70.7 (C-5′); 69.5 (C-4′); 69.2 (C-6); 57.3 (C-8); 52.9 (8-CO2CH3);
50.9 (C-14b); 26.3 (C-9). HRMS was not measured for this sample.

3.4.25.
(5bR*,15bS*)-5,5b,17,18-Tetrahydroindolo[2′,3′:3,4]pyrido[1,2-c]isoindolo[2,1-a]quinazolin-11(15bH)-
One (10/C1)

Colourless solid. Yield: 0.667 g (88%) with 5 h reaction time. M.p. 272–274 ◦C. 1H-NMR
(DMSO-d6): 11.47 (s, 1H, (N)H-5); 8.54 (dd, J = 8.2 Hz and 1.1 Hz, 1H, H-9); 7.85 (d, J = 7.6 Hz, 1H,
H-12); 7.74 (t, J = 7.6 Hz, 1H, H-14); 7.69 (d, J = 7.6 Hz, 1H, H-15); 7.64 (t, J = 7.6 Hz, 1H, H-13); 7.56 (d,
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J = 7.6 Hz, 1H, H-6); 7.40 (d, J = 7.8 Hz, 1H, H-4); 7.33 (d, J = 7.8 Hz, 1H, H-1); 7.30 (dd, J = 8.2 Hz
and 7.6 Hz, 1H, H-8); 7.09 (t, J = 7.8 Hz, 1H, H-7); 7.07 (t, J = 7.9 Hz, 1H, H-3); 6.93 (ddd, J = 7.9 Hz,
7.2 Hz and 1.0 Hz, 1H, H-2); 6.32 (s, 1H, H-15b); 5.75 (s, 1H, H-5b); 2.89 (dt, J = 14.9 Hz and 2.8 Hz, 1H,
H-17a); 2.62 (m, 1H, H-18b); 2.49 (dt, J = 14.9 Hz and 2.8 Hz, 1H, H-17b); 2.46 (m, 1H, H-18a); 13C-NMR
(DMSO-d6): 165.5 (C-11); 140.1 (C-15a); 136.6 (C-4a); 135.1 (C-9a); 133.6 (C-14); 133.5 (two coalesced
lines, C-5a, C-11a); 130.5 (C-13); 128.5 (C-6); 128.1 (C-8); 126.6 (C-18b); 124.4 (C-5c); 124.3 (C-5); 124.2
(C-7); 123.9 (C-12); 121.6 (C-3); 119.1 (C-2); 118.6 (C-1); 118.2 (C-9); 111.7 (C-4); 107.5 (C-18a); 77.0
(C-15b); 57.1 (C-5b); 38.4 (C-17); 21.4 (C-18). HRMS exact mass calcd. for C25H20N3O [MH]+, requires
m/z: 378.16009, found m/z: 378.15966.

3.4.26. Methyl
(5bR,15bS,17S)-11-Oxo-5,5b,11,15b,17,18-Hexahydroindolo[2′,3′:3,4]pyrido[1,2-c]-isoindolo[2,1-a]
quinazoline-17-Carboxylate (11/C1)

Colourless solid. Yield: 0.619 g (71%) with 5 h reaction time. M.p. 239–242 ◦C. 1H-NMR
(DMSO-d6): 11.54 (s, 1H, (N)H-5); 8.65 (dd, J = 8.2 Hz and 1.1 Hz, 1H, H-9); 7.79 (dd, J = 7.6 Hz and
1.1 Hz, 1H, H-12); 7.65 (td, J = 7.6 Hz and 1.1 Hz 1H, H-14); 7.60 (d, J = 7.6 Hz, 1H, H-15); 7.58 (td,
J = 7.6 Hz and 1.1 Hz, 1H, H-13); 7.42 (d, J = 8.2 Hz, 1H, H-4); 7.35 (two coalesced d’s, J~8 Hz, 2H,
H-1,6); 7.31 (ddd, J = 8.2 Hz, 7.6 Hz and 1.1 Hz, 1H, H-8); 7.09 (ddd, J = 8.2 Hz, 7.9 Hz and 1.0 Hz, 1H,
H-3); 7.05 (td, J = 7.6 Hz and 1.1 Hz, 1H, H-7); 6.95 (t, J=7.9 Hz, 1H, H-2); 6.48 (s, 1H, H-15b); 5.92 (s,
1H, H-5b); 3.48 (dd, J = 8.9 Hz and 5.2 Hz, 1H, H-17a); 2.98 (dd, J = 15.4 Hz and 8.9 Hz, 1H, H-18b);
2.83 (s, 3H, 17-CO2CH3); 2.70 (dd, J = 15.4 Hz and 5.2 Hz, 1H, H-18a). 13C-NMR (DMSO-d6): 172.5
(17-CO2CH3); 165.2 (C-11); 139.4 (C-15a); 136.5 (C-4a); 135.5 (C-11a); 133.7 (C-9a); 133.2 (C-5a); 132.4
(C-14); 130.4 (C-13); 128.4 (C-8); 128.2 (C-6); 126.25 (C-18b); 126.20 (C-15); 124.6 (C-5c); 124.1 (C-7); 123.3
(C-12); 121.8 (C-3); 119.3 (C-2); 118.5 (C-1); 117.5 (C-9); 105.1 (C-18a);; 77.1 (C-15b); 58.7 (C-5b); 54.5
(C-17); 51.9 (17-CO2CH3); 26.5 (C-18). HRMS exact mass calcd. for C27H22N3O3 [MH]+, requires m/z:
436.16557, found m/z: 436.16519.

4. Conclusions

Using a straightforward three-step reaction sequence comprising Pictet-Spengler annelation
followed by nitro-reduction and aldehyde-mediated cyclization, tryptamine and l-tryptophan were
converted into a series of partly saturated novel polycondensed β-carbolines obtained as racemic
mixtures and single enantiomers, respectively, with well-defined conformations identified by single
crystal X-ray analysis and NMR measurements. On the basis of the results of comparative DFT
studies, a plausible mechanism was proposed for the final cyclization that might account for the
observed stereochemical outcome controlled by the electronic properties and steric bulk of the
reactants. The prepared compounds were evaluated for their antiproliferative/cytotoxic activity
on human malignant cell lines PANC-1, COLO-205, A2058 and EBC-1 disclosing characteristic
structure-activity relationships and cell-selectivity that might be utilized in rational structure-refinement
in the development of more potent antiproliferative agents with enhanced activity and selectivity.
Accordingly, besides the comparative tests of the particular tryptamine-derived enantiomers envisaged
to be available by stereoselective cyclization procedures (using e.g., organocatalysis) or chromatographic
separation, the synthesis and evaluation of the d-tryptophan-derived enantiomers and further models,
with an array of substituents in the different regions of the heterocyclic skeletons, will be the subjects
of subsequent papers.

Supplementary Materials: Description of cell culture and viability assays; copies of NMR spectra; details of x-ray
analysis of 9f/T1.
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25. Kocsis, L.; Szabó, I.; Bősze, S.; Jernei, T.; Hudecz, F.; Csámpai, A. Synthesis, structure and in vitro cytostatic
activity of ferrocene—Cinchona hybrids. Bioorg. Med. Chem. Lett. 2016, 26, 946–949. [CrossRef]
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