

SYNTHESIS AND IN VITRO BIOLOGICAL EFFECT OF GNRH - PROTOPORPHIRIN IX CONJUGATES

Lilla Pethő^a, József Murányi^b, Nassima Kram^a, Gyöngyi Bökönyi^b, Gabriella Csík^c, Gábor Mező^{a,d}

^aMTA-ELTE Research Group of Peptide Chemistry, Budapest, Hungary ^bMTA-SE Pathobiochemistry Research Group, Budapest, Hungary ^cSE Department of Biophysics and Radiation Biology, Budapest, Hungary ^dEötvös Loránd University, Faculty of Science, Institute of Chemistry, Budapest, Hungary

lilla.petho@gmail.com

proper conjugation site³

(superagonist)

GnRF

Gonadotropin-releasing hormone (GnRH) receptors are overexpressed on various tumor cells. Primary biological function of GnRH is the regulation of the gonadal activity and the vertebrate reproduction¹

Glp-His-Trp-Ser Tyr-Gly-Leu-Arg-Pro-Gly-NH₂

Glp-His-Trp-Ser-His-Gly-Trp-Tyr-Pro-Gly-NH₂

Lys(Bu) *D*Lys

GnRH-I

native ligand of the GnRH receptors, that is synthesized and released increases receptor binding in the hypothalamus

affinity and stability² **GnRH-II**

neuromodulator and sexual behavior

Protoporphyrin IX

Photodynamic therapy (PDT): combination of a photosensitizer, light and oxygen⁴

Porphyrin-based photosensitizers

are most commonly used due to their photophysical properties⁵

Conjugate	MW _{calc.} /MW _{meas.} ^a	R _t / min ^b		
GnRH-I[⁶ DLys(PpIX)]	1796.9 / 1797.4	24.2		
GnRH-I[⁴ Lys(Bu); ⁶ DLys(PpIX)]	1908.0 / 1908.5	24.7		
PpIX(GnRH-I[⁴ Lys(Bu); ⁶ DLys]) ₂	3253.9 / 3255.3	21.8		
GnRH-II[⁴ Lys(Bu); ⁶ DLys(PpIX)]	1963.3 / 1963.2	24.9		
GnRH-III[⁴ Lys(Bu); ⁸ Lys(PpIX)]	1929.2 / 1929.3	25.1		
PEG-PpIX-(GnRH-I[⁴ Lys(Bu); ⁶ DLys])	2889.5# / 2845.6*	24.6		
PpIX-PEG	1543.2# / 1499.4*	32.3		
PpIX-PEG ₂	2524.3# / 2349.4*	21.8		

non-toxic, non-immunogenic polymer improves drug solubility and decreases immunogenicity⁶

In vitro tests

Detroit-562 human pharyngeal cells

expression

 \rightarrow proper cell line

for the *in vitro* tests⁷

1 μM [Lys⁸(FITC)] -GnRH-III

Oriel type 250 W quartz wolfram halogen lamp (QTH lámpa Newport Corporation, CA, USA)

Assay high GnRH-I receptor

- 5 h coincubation of the cells with the conjugates
- wash-out
- irradiation (at 635 nm)
- 72 h incubation
- MTT-test

120

80

60

40

() 100 NTROL)

8

B) optimization of the incubation time

conjugates are not effective without irradiation toxicity directly after irradiation at in high concentrations

D) effect of the different targeting moieties

the exchange of Ser to Lys(Bu) decreases the efficacy $GnRH-I > GnRH-III[^4Lys(Bu)] > GnRH-I[^4Lys(Bu)] > GnRH-II[^4Lys(Bu)]$

LNCaP MCF-7 MCF-7 BxPC-3 BxPC-3 HT-29 HT-29 Detroit-562 NIH/3T3 NIH/3T3 hypophysis	 GnRH-I 1 μM 40 μM DMSO GnRH-I[⁴Lys(Bu),⁶DLys(PpIX)] 10 min irradiation 30 min irradiation A) optimization of the irradiation time 10 min irradiation is almost as effective as 30 min 	 C) optimization of the concentration conjugates are effective in low concentrations (~1 	 φ φ	
Conclusion solubility was increased by PEG conjugation different GnRH analogs were synthesized in vitro biological effect was measured by MTT assay the conjugates are effective in low concentration (~1µM) bifunctional conjugates have lower efficacy best conjugate is GnRH-I[⁶DLys(PpIX)] 				
Acknowledgement This project has received funding from the National Office (NKFIH K119552 and NVKP_16-1-2016-0036),	Research, Development and Innovation Hungary.	References Mező G., Manea M., <i>Expert Opin. Drug Deliv.</i> , 2010 , 7, 79-96. Hegedüs R. <i>et al.</i> , <i>Eur. J. Med. Chem.</i> , 2012 , 56, 155-165. Bajusz S. <i>et al.</i> , <i>PNAS</i> , 1989 , 86, 6313-6317.	 ⁴ Malatesti N., Munitic I., Jurak I., <i>Biophys Rev.</i>, 2017, 9, 149-168. ⁵ Juzeniene A., Peng Q., Moan J., <i>Photochem. Photobiol. Sci.</i>, 2007, 6, 1234-1245. ⁶ Veronese F.M., Mero A., <i>BioDrugs</i>, 2008, 22, 315-329. ⁷ Murányi J. <i>et al.</i>, <i>J. Pept. Sci.</i>, 2016, 22, 552-560. 	